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Historical perspective

Concern about noise did not start with the advent of jet
aircrafts...

4000 BC - ...the Great Flood was the punishment of the
people for making too much noise, and so disturbing the
tranquility of the gods (Epic of Gilgamesh).

600 BC - the Sybarites (Southern Italy) required noisy
tradesmen to ply their trades outside the city walls (early
zoning regulation).

100 AD - the Romans banned wheeled traffic from the
Forum because of noise.
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Historical perspective continued

« 1636 - Mersenne measured the speed of sound, obtaining
a rather inaccurate value of 448 m/s.

« 1738 - first precise measurements of the speed of sound;
332 m/s at 0°C — within 0.3% of the best modern value!

(Academy of Paris)

1850 — Boston is first city in NA to have a noise bylaw.
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Historical perspective continued

RN R
mid-1800’s onwards — research on main propagation features

| TYndaII (1875) investigating scattering by fog
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Historical perspective continued

I ——
Early 1900’_s — applications of outdoor acoustics...

15éme année ' ' '782-2/4

Acoustic detection of planes (war 1914-18)
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Historical perspective — modern work

1959 — jet aircraft enter commercial service...

1960’s onwards - concern over noise resulted in increased
scientific activity.

Progress with both experiments and theory, as well as
Standards.

1990’s - theory includes sophisticated numerical models
and engineering models are available for general use
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Governing equation

« When sound propagates, it is attenuated.

 This attenuation can be expressed as the sum of three
independent terms:

Total attenuation = A, + A, .+ A,

A, geometrical spreading
A, atmospheric absorption
A, all other attenuation
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Geometrical spreading, A,

source r
O

This implies 6 dB decrease per doubling of distance

Pressure o 1/r
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Atmospheric absorption, A_, .
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The two main attenuation terms, A, + A
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Attenuation by all other effects, A_,,
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A, In a very calm atmosphere

Point source S above ground

°A
» Grazing angle @ is a critical parameter

dominated by ground impedance Z,

env
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A, In very calm atmosphere continued

Grass-covered ground
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A, at short ranges

Different types of ground cover
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A, at longer ranges

Sound rays in the atmosphere

downwind or
nighttime
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A, at longer ranges - Parkin and Scholes, 1965

Grass-covered airfield Frequency = 1.2 kHz
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A, at longer distances continued

« A_. . nolonger dominated by ground impedance.

env

 Theory must include atmospheric effects.

 Powerful numerical codes:

— Advance Ray Tracing techniques (RT)
— Fast Field Program (FFP)

— Parabolic equation (PE)

 Engineering models:
— 1SO 9613-2

— Nord2000

— Harmonoise model
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Downward refraction
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Height (m)

Upward refraction
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EXCESS
ATTENUATION
d

Upward refraction continued
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Turbulence
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Upward refraction with turbulence
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EXCESS
ATTENUATION

Upward refraction with turbulence continued
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Practical application of Numerical Models

Detection, identification and localisation of sources
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Engineering models

e |ISO 9613-2
e Nord2000

 Harmonoise model

26 MG Acoustics



A, from ISO 9613-2

* Prediction applies to meteorological conditions favorable
to propagation:
— Downwind propagation
— Temperature inversion (nighttime)

 Produces levels that are rarely exceeded
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Aenv from ISO 9613-2 continued

* In the case where the sound speed profile varies linearly with height,
there is a closed form solution for all the sound rays.

* There are families of rays that reflect from the ground:
» in the middle region
» close to the source
» close to the receive

Source

| Middle region Receiver region
region
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Aenv from ISO 9613-2 continued
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Insertion loss of barrier from and Fresnel number

INSERTION LOSS -dB
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EXCESS ATTENUATION (dB)

A, from ISO 9613-2, short range
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A, from ISO 9613-2, short range continued
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EXCESS ATTENUATION (dB)
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EXCESS ATTENUATION (dB)

A, from ISO 9613-2, longer ranges continued
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A, from the Nord2000 model

e Accounts for:
— different impedance grounds
—terrain effects
—refraction
—turbulence
 More detailed barrier calculation

35 MG Acoustics



A, from the Nord2000 model

36

Accounts for different types of grounds

Representative | Range of Nord-
Impedance S : e
i flow resistivity | test flow resis- | Description
eass c (stm'4) tivity classes
12.5 10, 16 Very soft (snow or moss-like)
B 31.5 25,40 Soft forest floor (short, dense
heather-like or thick moss)
C 80 63, 100 Uncompacted, loose ground (turf,
grass, loose soil)
D 200 160, 250 Normal uncompacted ground (for-
est floors, pasture field)
E 500 400, 630 Compacted field and gravel (com-
pacted lawns, park area)
F 2000 2000 Compacted dense ground (gravel
road, parking lot, ISO 10844)
G 20000 - Hard surfaces (most normal asphalt,
concrete)
H 200000 - Very hard and dense surfaces
(dense asphalt, concrete, water)
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A, from the Nord2000 model

Accounts for curved rays and modified
grazing angle ¥ at the ground
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A, from the Nord2000 model

General form of the sound speed profile

Zy

c(z)=c,+B In[i+1j+ Az

Where
A= f(u.,T.,L)

and also

B=1f (U*,T*, L) * U. friction velocity
* T. temperature scale
e L Monin-Obukhov length
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A, from the Nord2000 model

How to determine A and B

Table 5.3. Friction velocity, by wind speed class

wind speed class u: inm/s
w1 0.00
Table 5.1. Wind speed classification. w2 0.13
wind speed component at 10 m above | wind speed W3 0.30
ground class W4 0.53
0to1lm/s w1 W5 0.87
1to3 m/s W2
3to6m/s W3 Table 5.4. Temperature scale T+, by wind speed class and stability class
6>toléom”/‘é s :’M";" s1 s2 s3 sa S5
wi -0.4 -0.2 0.0 +0.2 +0.4
W2 -0.2 -0.1 0.0 +0.1 +0.2
Table 5.2. Classification of atmospheric stability. W3 0.1 -0.05 0.0 +0.05 0 TR
time of day cloud cover stability class w4 -0.05 0.0 0.0 0.0 +0.05
day 0/8 to 2/8 S1 W5 0.0 0.0 0.0 0.0 0.0
day 3/8 to 5/8 )
ntijatz{t gﬁg Eg g;g 243} Table 5.5. inverse of the Monin-Obukhov length 1/L, by wind speed class
night 0/8 to 4/8 S5 S1 S2 S3 S4 S5
Wi -0.08 -0.05 0.0 +0.04 +0.06
W2 -0.05 -0.02 0.0 +0.02 +0.04
W3 -0.02 -0.01 0.0 +0.01 +0.02
w4 -0.01 0.0 0.0 0.0 +0.01
W5 0.0 @0 | 00 0.0 0.0
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A, from the Nord2000 model

* However, the sound speed profile is linearized (red curve)
to take advantage of the closed solution for the sound rays.
* Normally, the position of the red curve is frequency dependent.
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A, from the Nord2000 model

Terrain effects are taken into account
by “segmenting” the ground surface

S @ ®R
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Nord2000 - barriers

four paths can be identified between source and receiver
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Effects of the ground “in detail”
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Nord2000 - barriers

All curved rays are taken into account
as well as modified grazing angles

Figure 9
Ray model for a single screen and downward refraction.

44 MG Acoustics



Nord2000 versus Harmonoise model

« Harmonoise is based on the same principles as Nord2000.
 However, once the linear sound speed profile is known, Harmonoise
assumes a curved ground and straight ray paths for the calculation.
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Validation of Harmonoise model
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ISO 9613-2 versus Harmonoise
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A&WMA Ontario Section, Fall 2013 Modelling Conference

... the end

thank you...
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