

Sound propagation: Review and tutorial

Gilles A. Daigle

A&WMA Ontario Section Fall 2013 Modelling Conference.

- Brief historical perspective
- Main propagation features
- Engineering models

Historical perspective

- Concern about noise did not start with the advent of jet aircrafts...
- 4000 BC ...the Great Flood was the punishment of the people for making too much noise, and so disturbing the tranquility of the gods (*Epic of Gilgamesh*).
- 600 BC the Sybarites (Southern Italy) required noisy tradesmen to ply their trades outside the city walls (early zoning regulation).
- 100 AD the Romans banned wheeled traffic from the Forum because of noise.

Historical perspective continued

- 1636 Mersenne measured the speed of sound, obtaining a rather inaccurate value of 448 m/s.
- 1738 first precise measurements of the speed of sound;
 332 m/s at 0°C within 0.3% of the best modern value!
 (Academy of Paris)
- 1850 Boston is first city in NA to have a noise bylaw.

Historical perspective continued

mid-1800's onwards – research on main propagation features

Tyndall (1875) investigating scattering by fog

Historical perspective continued

Early 1900's – applications of outdoor acoustics...

Acoustic detection of planes (war 1914-18)

Historical perspective – modern work

- 1959 jet aircraft enter commercial service...
- 1960's onwards concern over noise resulted in increased scientific activity.
- Progress with both experiments and theory, as well as Standards.
- 1990's theory includes sophisticated numerical models and engineering models are available for general use

Governing equation

- When sound propagates, it is attenuated.
- This attenuation can be expressed as the sum of three independent terms:

Total attenuation = $A_{div} + A_{abs} + A_{env}$

 A_{div} geometrical spreading A_{abs} atmospheric absorption A_{env} all other attenuation

Geometrical spreading, A_{div}

This implies 6 dB decrease per doubling of distance

Atmospheric absorption, A_{abs}

Calculated using ISO 9613-1
Strongly dependent on temperature and humidity

The two main attenuation terms, $A_{div} + A_{abs}$

Attenuation by all other effects, A_{env}

A_{env} in a very calm atmosphere

Point source S above ground

- A_{env} dominated by ground impedance Z₂
- Grazing angle $\boldsymbol{\Phi}$ is a critical parameter

A_{env} in very calm atmosphere continued

Different types of ground cover

15

Sound rays in the atmosphere

Grass-covered airfield

\blacktriangle Downwind ∇

 ∇ Upwind

A_{env} at longer distances continued

- A_{env} no longer dominated by ground impedance.
- Theory must include atmospheric effects.
- Powerful numerical codes:
 - Advance Ray Tracing techniques (RT)
 - Fast Field Program (FFP)
 - Parabolic equation (PE)
- Engineering models:
 - ISO 9613-2
 - Nord2000
 - Harmonoise model

Downward refraction

Upward refraction

Frequency = 1.2 kHz

Upward refraction continued

Turbulence

MG Acoustics

180

Upward refraction with turbulence

with turbulence no turbulence 150 Height (m) 001 12 50 -12 -18 0 200 400 600 800 0 200 800 0 400 600 Range (m) Range (m)

MG Acoustics

SPL (dB)

в D

-8

Upward refraction with turbulence continued

Practical application of Numerical Models

Diffracted signature

Engineering models

- ISO 9613-2
- Nord2000
- Harmonoise model

- Prediction applies to meteorological conditions favorable to propagation:
 - Downwind propagation
 - Temperature inversion (nighttime)
- Produces levels that are rarely exceeded

- In the case where the sound speed profile varies linearly with height, there is a closed form solution for all the sound rays.
- There are families of rays that reflect from the ground:
 - ➢ in the middle region
 - Close to the source
 - Close to the receive

Source region

Middle region

Receiver region

A_{env} from ISO 9613-2 continued

 $A_{env} = A_s + A_r + A_m$

Soft (G = 1) or hard ground (G = 0) MG Acoustics

Insertion loss of barrier from and Fresnel number

A_{env} from ISO 9613-2, short range

Short range, D = 15 m

A_{env} from ISO 9613-2, short range continued

A_{env} from ISO 9613-2, longer ranges

A_{env} from ISO 9613-2, longer ranges continued

- Accounts for:
 - -different impedance grounds
 - -terrain effects
 - refraction
 - -turbulence
- More detailed barrier calculation

Accounts for different types of grounds

Impedance class	Representative flow resistivity σ (kNsm ⁻⁴)	Range of Nord- test flow resis- tivity classes	Description
А	12.5	10, 16	Very soft (snow or moss-like)
В	31.5	25, 40	Soft forest floor (short, dense heather-like or thick moss)
С	80	63, 100	Uncompacted, loose ground (turf, grass, loose soil)
D	200	160, 250	Normal uncompacted ground (for- est floors, pasture field)
E	500	400, 630	Compacted field and gravel (com- pacted lawns, park area)
F	2000	2000	Compacted dense ground (gravel road, parking lot, ISO 10844)
G	20000	-	Hard surfaces (most normal asphalt, concrete)
Н	200000	-	Very hard and dense surfaces (dense asphalt, concrete, water)

Accounts for curved rays and modified grazing angle Ψ at the ground

General form of the sound speed profile

$$c(z) = c_0 + B \ln\left(\frac{z}{z_0} + 1\right) + Az$$

Where

$$A = f(u_*, T_*, L)$$

and also

$$B = f(u_*, T_*, L)$$

- *u*_{*} friction velocity
- T_{*} temperature scale
- L Monin-Obukhov length

How to determine A and B

wind speed component at 10 m above	wind speed
ground	class
0 to 1 m/s	W1
1 to 3 m/s	W2
3 to 6 m/s	W3
6 to 10 m/s	W4
> 10 m/s	W5

Table 5.2. Classification of atmospheric stability.

time of day	cloud cover	stability class	
day	0/8 to 2/8	S1	
day	3/8 to 5/8	S2	
day	6/8 to 8/8	S3	
night	5/8 to 8/8	S4	
night	0/8 to 4/8	S5	

Table 5.3. Friction velocity, by wind speed class

wind speed class	u∗ in m/s	
W1	0.00	
W2	0.13	
W3	0.30	
W4	0.53	
W5	0.87	

Table 5.4. Temperature scale T*, by wind speed class and stability class

	S1	S2	S 3	S4	S5
W1	-0.4	-0.2	0.0	+0.2	+0.4
W2	-0.2	-0.1	0.0	+0.1	+0.2
W3	-0.1	-0.05	0.0	+0.05	+0.1
W4	-0.05	0.0	0.0	0.0	+0.05
W5	0.0	0.0	0.0	0.0	0.0

Table 5.5. inverse of the Monin-Obukhov length 1/L, by wind speed class

S5
+0.06
+0.04
+0.02
+0.01
0.0

A_{env} from the Nord2000 model

- However, the sound speed profile is linearized (red curve) to take advantage of the closed solution for the sound rays.
- Normally, the position of the red curve is frequency dependent.

A_{env} from the Nord2000 model

Terrain effects are taken into account by "segmenting" the ground surface

Nord2000 - barriers

four paths can be identified between source and receiver

a.

с.

d.

Effects of the ground "in detail"

Nord2000 - barriers

All curved rays are taken into account as well as modified grazing angles

Nord2000 versus Harmonoise model

- Harmonoise is based on the same principles as Nord2000.
- However, once the linear sound speed profile is known, Harmonoise assumes a curved ground and straight ray paths for the calculation.

Validation of Harmonoise model

ISO 9613-2 versus Harmonoise

from W. Probst, INTER-NOISE 2013

A&WMA Ontario Section, Fall 2013 Modelling Conference

... the end

thank you...

