

Monitoring Conference October 26, 2016

Introduction to CEM's **Continuous Emissions Monitoring**

© CEM Specialties Inc. 4-04-09

CEMSpecialties Inc

What is a CEM?

- CEM is an acronym for Continuous Emissions Monitoring
- Contrary to popular belief, it does not stand for "Career Ending Move"
- It is an Analytical device used to continuously monitor the emissions from a process

CEM Specialties Inc.

CEM Installation Options

- In-line Cross Stack
 - Continuous measurement directly in the <u>stack/process</u>
- In-line Insitu (point)
 - Continuous measurement directly in the <u>stack/process</u>
 - Measuring a point within the stack
- On-line Extractive measurement
 - Continuous measurement,
 - Cold/Dry Sampling and conditioning of the sample gas feeding to the analyzer
 - Hot/Wet sample temperature controlled

Process Gas Conditions to Consider

- Harsh conditions
- High temperature
- High pressure
- High dust load
- Corrosive Gas
- Hazardous area
- Condensing Gas

Determining the Right Sample Point – I

Practical aspects of the sample location

- Easy accessibility for installation and maintenance
- Weatherproof installation
- Protection against process and plant influences

Determining the Right Sample Point-II

 All chemical reactions are completed at the sample location

 Sample gas is well mixed, with no signs of stratification

Determining the Right Sample Point-III

 Temperature and pressure: condensable, over pressuring

 Dust / Aerosols, Adsorption, desorption

In-line (In-situ) principle

Advantages

- Direct installation into the process
- Direct detection of changing concentrations
- No delay in measurement

Disadvantages

- Detector exposed directly to temperature and pressure
- Little, or no protection to dust and high temperatures
- Difficult installation, e.g. at the top of a stack etc.

Insitu Gas Analyzers

Lambert - Beer's Law $1 = 10 * e^{-E^*c^*L}$

Insitu Measure and Calibration Routine

CEM Specialties Inc.

In-Line (Cross Stack)

On-line (extractive) principle

- 12

CEM Specialties Inc.

0

Advantages

- Easy maintenance at the analyzer
- Multi component measurement possible
- Easy calibration

Disadvantages

- Additional effort for sampling and conditioning
- Dispose of the sample gas
- Leakage in sample system (misreading)
- Sometimes long response times


```
Hot Wet Extractive
```


Extractive Sample Probe Tube

- Material of Construction: carbon steel, stainless steel, hastelloy, PTFE
- Operating temperature: heated or unheated
- Filtration: filter or no filter, what porosity
- Mounting: flange size and material

Extractive Sample Probe

- Material of Construction: carbon steel, stainless steel, hastelloy, PTFE
- Operating temperature: heated or unheated
- Filtration: filter or no filter, what porosity
- Mounting: flange size and material

Sample Gas Transport

- Material of Construction: stainless steel, PTFE, Polyethylene
- Operating temperature: heated or unheated
- How many tubes, what diameter of tubes
- Length of line needed

Sample Gas Conditioner

Cool circular flow

- **5 Heat exchanger**
- **6 Vaporizer**
- 7 Cool block with Temperature Sensor
- 8 Control valve

Sample Gas Transport

Extractive Hot Wet Gas Analyzer

Extractive Cold Dry Gas Analyzer

CEM Specialties Inc.

Internal Calibration Cells

Infrared spectroscopy

- Selective absorption of IR light
- Typical gases: CO₂, CO, NO, SO₂, C₂H₄

Ultraviolet spectroscopy

- Selective absorption of UV light
- Typical gases: NO, NO₂, SO₂, Cl₂

Magnetic susceptibility

Measurement of paramagnetic O₂

Thermal conductivity

- Measurement of differences in thermal conductivities
- Typical gases: H₂, He

Flame ionization

- Ionization of organic compounds in a hydrogen flame
- Typical gases: all kind of organic compounds, e.g. CH₄, C₃H₈

Website: www.cemsi.on.ca