

SNC-LAVALIN BEST PRACTICES IN LEAK DETECTION AND REPAIR (LDAR) PROGRAMS

November 06, 2014 By: François Thibodeau, Eng.

PRESENTATION OVERVIEW

- **1. Essential Components of a LDAR Program**
- 2. LDAR Best Practices
 - a. A Good Start
 - b. Chemical Compounds of Interest
 - c. Potential Leak Sources
 - d. Identifying Components
 - e. Accepted Leak Detection Methodologies
 - f. Repair and Follow-up Programs
 - g. Reporting
 - h. QA/QC
 - i. Database and Software
 - j. Audits
- 3. Discussion and questions

LDAR BEST PRACTICES

A good LDAR program should start with a document specifying regulatory requirements and facility-specific procedures for component identification, monitoring, repairs and record keeping.

It should establish:

- The objectives of the program and how to measure its success
- The scope of the program
- The roles and responsibilities of personnel involved
- The training program for personnel involved
- The procedures for leak identification, tracking and repair
- The procedure for maintaining and updating the database

CHEMICAL COMPOUNDS OF INTEREST

The purpose of a LDAR program is to control and to reduce process fugitive emissions of pollutants to the atmosphere

- Traditionally: VOCs, HAPs and more recently GHGs
- The same kind of program could be used to control and reduce fugitive emissions of any other substance, as long as there is a way of detecting leaks (ex: toxic, dangerous, valuable, etc.)

POTENTIAL LEAK SOURCES (1 of 2)

LDAR programs usually include the following sources:

- Pump seals
- Compressor seals
- Agitator seals
- Valves
- Flanges
- Connectors
- Open-ended lines
- Pressure relief devices
- Sampling connections

POTENTIAL LEAK SOURCES (2 of 2)

- Exemptions (CCME)
 - Stacks
 - Vents
 - Combustion systems
 - Storage tanks
 - Open storage piles
 - Ponds
 - Sludge drying beds
 - Cooling tower sumps
 - Wastewater separators

- Components in vacuum service
- Components in heavy liquid service
- Components that are of "leakless" design
- Inaccessible components
- Valves smaller than ³/₄ inch
- Valves that are not externally activated (i.e. check valves)

IDENTIFYING COMPONENTS (1 of 5)

- Unique ID number for each component
- Verify with process diagrams and data

IDENTIFYING COMPONENTS (2 of 5)

IDENTIFYING COMPONENTS (3 of 5)

IDENTIFYING COMPONENTS (4 of 5)

Positively identify on site

Record relevant information about each source

IDENTIFYING COMPONENTS (5 of 5)

- Database must be updated with new or modified equipment, or when it is taken out of service
- Periodic field audits should be performed

ACCEPTED LEAK DETECTION METHODOLOGIES (1 of 5)

13

• U.S. EPA Method 21 (portable VOC analyzer)

• Alternate work practice (IR Camera or others)

ACCEPTED LEAK DETECTION METHODOLOGIES (3 of 5)

- **EPA Method 21 Monitoring**
- Response factors <10
- Calibration precision <10%
- Response time <30 sec
- Calibrations needed every monitoring day and periodic checks (logs)
- Calibration gases: at least zero air and span = leak definition
- Subtraction of background
- Monitor with probe at the surface
- Locate maximum value and monitor for 2x response time (response time is typically 3.5 sec)
- Trained technicians under management of competent supervisor
- Periodic audits

ACCEPTED LEAK DETECTION METHODOLOGIES (5 of 5)

Alternate Work Practice (IR Camera)

- Must be capable of imaging compounds that are regulated in the stream
- Must provide an image of the leak and the leak source
- Must meet a minimum detection sensitivity mass flow rate
- Conduct a daily check
- Keep records of detection sensitivity level used, analysis for determination of lowest mass fraction emission rate, daily checks and video record of leak survey
- Repair checks with the same detection technology
- At least one Method 21 monitoring per year
- Trained technicians under management of competent supervisor
- Periodic audits

REPAIR AND FOLLOW-UP PROGRAMS

Complete repairs as soon as practicable

- First attempt can easily repair over half of the leaks
- Check for success right away, but also after a few days
- Failed attempts ⇒ schedule for maintenance
- Keep records of all repair operations on each specific leak
- Analyze data to detect chronic leakers
- Consider replacing chronic leakers with "leakless" design components

REPORTING

- Typical reports : Leak reports, report of periodic or annual emissions, compliance reports
- Leak reports for the plant maintenance personnel
 - ID number, location, process fluid, repair history, etc.
- Annual emissions and compliance reports for the regulating authority
 - Emission calculation method used

- Emissions detailed by component type, chemical species, process unit, etc.
- Leak frequencies (by component and process unit)
- Leaks found, repaired, and postponed
- Results of internal audits and other QA/QC procedures

QUALITY ASSURANCE AND CONTROL (1 of 11)

- Important to ensure that monitoring method and LDAR procedures are being followed in order to achieve emissions reduction
- Should include:
 - Internal and third-party audits
 - Written procedures for: source identification; monitoring; leak identification; repairs and follow-up; database updates; emission calculations.
 - Daily reviews/sign-off of monitoring data by LDAR supervisor
 - Process for evaluating chronic leakers
 - Recordkeeping
 - Training

QUALITY ASSURANCE AND CONTROL (2 of 11)

- Internal audits
 - Review records, logs and database on a regular basis
 - Verify that all applicable process components are identified for monitoring
 - Verify that all leaks are being repaired within expected timeframes
 - Review calibration and monitoring
 - Review daily monitoring logs:
 - Trigger corrective measures as soon as possible
 - Frequency of internal audits has to be adjusted to the processes audited. Daily operations should be audited more often than monthly operations.

QUALITY ASSURANCE AND CONTROL (3 of 11)

- Written procedure for source identification
 - Specify equipment and process parameters for inclusion in the LDAR program
 - Describe what documentation will be used (PFD, P&ID, etc.) and how sources will be identified
 - List responsibilities for implementation and verification
 - Identify exemptions
 - Specify which software is used

20

List information to be included for each source

QUALITY ASSURANCE AND CONTROL (4 of 11)

- Written procedure for monitoring
 - Monitoring equipment to be used
 - Training required
 - Calibration procedure
 - Monitoring procedure
 - Recordkeeping
 - Health and safety recommendations
 - Information on specific process units
 - Standardized forms for calibration, recordkeeping, etc.

QUALITY ASSURANCE AND CONTROL (5 of 11)

- Written procedure for leak identification
 - Clearly define criteria to declare leaks
 - Instructions on how to identify leaks on site and in database
 - Good practice to apply a clearly visible leak tag

QUALITY ASSURANCE AND CONTROL (6 of 11)

- Written procedure for repairs and follow-up
 - Specify requirements regarding delay of repairs, acceptable repair methods, re-inspection procedure and recordkeeping
 - List steps of the repair process and establish responsibilities

QUALITY ASSURANCE AND CONTROL (7 of 11)

- Written procedure for database updates
 - Establish responsibilities to keep the database updated with changes made in the plant
 - Create communication channels between plant departments to inform of changes

QUALITY ASSURANCE AND CONTROL (8 of 11)

- Daily reviews and sign-offs should check for:
 - Number of sources monitored per day per technician
 Method 21: should normally be between 300-600
 - Time between readings
 - Should never be below 10 seconds

- > On average in a day, should be between 30 and 60 seconds, or more
- Abnormal data patterns
 - Bursts of readings
 - Severalhigh readings after a leak was found
 - > Etc.
- Calibration data
 - Calibration and verification times (beginning and end of day)
 - Calibration drift (<10%)
 - Calibration gases used
 - Etc.

QUALITY ASSURANCE AND CONTROL (9 of 11)

Evaluation of chronic leakers

- After several monitoring cycles, it becomes possible to detect specific components that tend to leak more often
- Should take place at least once a year
- Chronic leakers usually show that the equipment or seal or gasket used is not suitable for this particular application
- Special action should be taken where possible to eliminate chronic leakers (more frequent monitoring, component replacement, use of alternate sealing technologies, etc.)

QUALITY ASSURANCE AND CONTROL (10 of 11)

- Recordkeeping
 - Procedures
 - Signed and dated reports of QA/QC activities
 - Daily calibration forms
 - Database of identified components, leaks found, repairs completed, etc.
 - List of chronic leakers and action taken
 - Audit reports and corrective actions
 - Annual report of fugitive emissions

QUALITY ASSURANCE AND CONTROL (11 of 11)

- Training
 - Important that all personnel involved have a sound understanding of all procedures
 - At a minimum, there should be an internal training program in place
 - To our knowledge, no training is currently available in Canada, at least on a regular basis. Specific training can be provided by some LDAR specialists on demand.
 - Training sessions are available from U.S. EPA and private companies.

DATABASE AND SOFTWARE

- Considering the very large amount of data necessary to maintain a LDAR program, it is highly recommended to use a reliable LDAR software.
- Database will guarantee data integrity and collects all relevant information in the same place.
- Facilitates data analysis, recordkeeping, repairs and follow-up management, QA/QC, emission calculations and reporting.

AUDITS (1 of 5)

- Evaluation of LDAR programs can solely be done through review of reports only, but including on-site inspections is a much more reliable way to verify the overall quality of the program
- U.S. EPA's enforcement alert (October 1999): monitored 47,000 valves in 17 refineries. Results showed:
 - Leak rates significantly higher than reported (5.0% vs 1.3%)
 - Emissions significantly higher than reported (1.3 t/hr vs 0.5 t/hr)
 - Failure to follow monitoring method adequately
 - Estimated that monitoring at only 1 cm away from component instead of at the interface would result in missing 57% of leaks on valves !

AUDITS (2 of 5)

Important factors that contribute to failure of detecting and permanently repairing leaks:

- 1. Not identifying all potential leak sources
- 2. Not monitoring components

- 3. Insufficient time spent detecting leaks
- 4. Incorrect positioning of probe
- 5. Failing to properly maintain and/or operate monitoring instrument
- 6. Incorrectly exempting components from monitoring
- 7. Unnecessarily postponing repairs
- 8. Inadequate repair follow-up

Common shortcomings

- Personnel with insufficient LDAR training or knowledge
- Parts of the process omitted

- Insufficient documentation for exempted components
- Database not updated with recent plant modifications
- Incomplete calibration records
- Improper calibration gases (expired, incorrect concentration, wrong compound)
- Incorrect calibration procedure (warming period, beginning and end of day (minimum), drift calculation, etc.)

AUDITS (4 of 5)

Common shortcomings (cont'd)

- Too many components monitored in one day
- Incorrect probe positioning
- Insufficient time to detect leaks
- Not measuring the background
- Failing to monitor at the maximum leak location
- Not monitoring all potential leak interfaces

AUDITS (5 of 5)

Common shortcomings (cont'd)

- Leaks not reported in a timely manner for repairs
- No follow-up on repairs
- Incorrect verification of repairs
- No evaluation of chronic leakers
- Improper application of emission calculation techniques
- Inadequate or missing QA/QC procedures
- Insufficient recordkeeping

REFERENCE

François Thibodeau, Eng.

514-393-1000

francois.thibodeau@snclavalin.com

DISCUSSION AND QUESTIONS

Thank you!

