

Presentation Outline

- Why Talk About Limitations?
- Why Do We Need to Model?
- Common Method for Environmental Modeling
- The Real Equation
- Simplification - Types of Acoustical Model
- Limitations
- Sources of Inaccuracy

Why Talk About Limitations?

- There are a LOT of individuals conducting acoustic modeling who do not know the fundamentals
- ALL modeling is a garbage-in-garbage-out process. Without knowing fundamentals...
=> Garbage out

Modern modeling software is so userfriendly, it can lull us into complacency (and the delusion that we know what we're doing)

量

Morne
vตมดกาบм

Rob's Three Key Rules of Modeling

1. The model is not reality
2. The model is not reality
3. The model is not reality

禺

Mose \qquad

Oh．．．and Two More Rules

4．Understand the simplifications of the modeling method

5．Verify／calibrate your results

䮎

Why Do We Need to Model？

－New facility－not yet built
－Proposed change to facility
－Contribution of individual sources（ranking）
－Identify sources requiring abatement
Determine per－source abatement needed
－Design noise control measures
－Isolate sound of facility from interfering sound

Q: What is the common method used for Environmental Acoustical Modeling?

A: Ray Tracing

Q: Is sound a ray?

A: No, sound is a wave.

Q: So why do we (can we) model as a ray?

The Real Equation

The wave equation (acoustic, not EM)
Derivation:
$\frac{\delta \rho}{\delta t}+\rho_{0} \cdot \nabla^{\rightarrow} \cdot v_{(x, y, z)}=0$
(1) Conservation of mass equation

The Real Equation

The wave equation (acoustic, not EM)
Derivation:

$$
\rho_{0} \cdot \frac{\partial v_{(x, y, z)}}{\partial t}=-\nabla \rightarrow p
$$

(2) Momenturn equation (Newton's 2nd Law)

The Real Equation

The wave equation (acoustic, not EM)
Derivation:

$$
p \approx c^{2} \rho+P_{0}
$$

(3) Ideal Gas Law (Linearized)
\qquad

The Real Equation

Do some calculus, make some substitutions, Perform some regrouping, and...

$$
\nabla^{2} p-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

Tada!... the wave equation
A partial differential equation with four independent dimensions - 3 spatial and time

	5	5	
402usitis	M0059	ทธมดกTOM	HGC ENEINEERINO

The Real Equation

Special case - steady sound...

Sample Boundary Element Model

Sample Boundary Element Model

Sample Boundary Element Model

Sample Boundary Element Model

Sample Boundary Element Model

BEM Outdoors - Simple Geometry

Environmental Acoustical Modelling

Ray Tracing
$\lambda=0!!$
No wave effects!

Purely geometrical calculations

Environmental Acoustical Modelling Ray Tracing

$$
\frac{d X_{i}(s)}{d s}=\frac{1}{|\operatorname{grad} S|} \frac{\partial S\left(s_{j}\right)}{\partial x_{i}}, \quad i=1,2,3
$$

Environmental Acoustical Modelling

Instead, ray tracing models calculate the geometry (assuming rays) and approximate wave effects by superimposing simplified analytical approximations

Environmental Acoustical Modelling

- Adiv Geometric divergence
- K0 Solid angle correction
- Dc Directivity coefficient
- Agnd Ground absorption
- Abar Barrier attenuation
- Aatm Atmospheric absorption

Afol Foliage attenuation

- Ahous Attenuation by scattered structures
- Cmet Meteorological effects
- Refl Reflections
(Red indicates a frequency dependent (wave) effect)

Environmental Acoustical Modelling

Limitations of Modeling Barriers

Environmental Acoustical Modelling

Limitation - Atmospheric Effects are Crudely Modeled (Circular Curve = Implies linear monotonic gradient)

Environmental Acoustical Modelling

Summary of Simplifications/Limitations:

- Wave propagation is modeled as a ray
- Ray calculation is purely geometric
- Approximations for wave phenomena are (crudely) estimated and superimposed
- Wave phenomena (attenuation mechanisms) are (crudely) assumed to be independent when in fact they are interrelated

Pans \qquad
ทตมดกเบм

Environmental Acoustical Modelling

Verify results! How?

- Calibrate model against mid-field or far-field measurement results

Environmental Acoustical Modelling

Verify results! How?

- Calibrate model against mid-field or far-field measurement results
- Use different methods to compare answers (e.g., manual calculation)

Sensitivity analyses

- Engineering experience

