RYERSON UNIVERSITY

Prof. Ramani Ramakrishnan, DSc., P. Eng.

Dept. of Architectural Science Ryerson University

AWMA/OS Noise Conference, Toronto

22 October 2013

22 October 2013 AWMA/OS Noise Conference, Toronto

LEADERS OF TOMORROW

RYERSON UNIVERSITY

INPM - JASCO

22 October 2013 AWMA/OS Noise Conference, Toronto

INPM - JASCO

22 October 2013

AWMA/OS Noise Conference, Toronto

LEADERS OF TOMORROW

RYERSON UNIVERSITY

INPM - JASCO

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

22 October 2013 AWMA/OS Noise Conference, Toronto

LEADERS OF TOMORROW

RYERSON UNIVERSITY

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

- ENGINEERING METHODS
 - APPROXIMATE SEMI-ANALYTICAL METHODS

NUMERICAL METHODS

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

APPROXIMATE SEMI-ANALYTICAL METHODS

- INDIVIDUAL CONTRIBUTIONS
- SIMPLE ANALYTICAL SOLUTIONS OF WAVE EQUATIONS
- TRACKING OF METEOROLOGICAL CONDITIONS
- SIMPLE RAY TRACING METHODS

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

NUMERICAL METHODS

- DRECTION SOLUTION OF THE WAVE EQUATION
- FFP PE METHODS
- SPECIFIC METEOROLOGICAL CONDITIONS
- NON-COMPLEX LEVEL TERRAIN CONDITIONS

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

ENGINEERING METHODS

- ISO 9613 PARTS 1 AND 2
- CONCAVE
- BRITISH STANDARD BS5228
- HARMONOISE-NORD2000

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

ISO 9613 – PARTS 1 AND 2

 $L_{\tau}(DW) = L_{w} + D_{c} - A$

 $A = A_{div} + A_{aum} + A_{gr} + A_{bar} + A_{misc}$

 A_{div} is the attenuation due to geometric divergence = A1; A_{atm} is the attenuation due to atmospheric absorption = A2; A_{gr} is the attenuation due to the ground effect = A3; A_{bar} is the attenuation due to a barrier or topographic features = A5; A_{misc} is the attenuation due to propagation through foliage, industrial sites, and housing.

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

HARMONOISE AND NORD2000

- SPL IN 1/3 OCTAVE BANDS 25 Hz 10 kHz
- FACTORS SOLVED SEPARATELY (MINUSED)
 - BRITISH STANDARD BS5228

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

HARMONOISE AND NORD2000

> A1 SAME

A2 ISO9613(1) AND ADJUST FOR OCTAVE BANDS

A3 - DELANEY AND BAZELY IMPEDANCE PARAMETER

A4 – RAY PROPAGATION SOUTIONS

A5 – SEGMENTATION AND BETTER RESOLUTION

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

WAVE MODEL

- ➢ WAVE SOLUTION
- BETTER GROUND EFFECT
 - NO METEOROLOGICAL CONDIITONS

$$p(x, y, z) = \frac{e^{ikR_1}}{4\pi R_1} + R_p \frac{e^{ikR_2}}{4\pi R_2} + \left[\left(1 - R_p \right) F(w) \right] \frac{e^{ikR_2}}{4\pi R_2}$$

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – ENGINEERING METHODS

Frequency, Hz		63	125	250	500	1000	2000	4000	8000	dB(A)
Octave band sound pow	ver level, dB	118	113	109	106	103	99	92	82	108
Frequency, Hz	63	125	250	500	100	0 20	00 4	000	8000	dB(A)
ISO 9613-2	56.1	50.8	46.0	42.9	38.8	3 32	.3 1	6.6	-	45
Wave Solution	58.4	52.5	44.6	40.3	38.7	7 31	.6 2	0.8	-	44
Harmonoise	58.6	52.8	45.0	40.0	39.7	7 33	.5 1	7.6	4.9	44

500 m; 1.5 m above hard ground

22 October 2013

AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – ENGINEERING METHODS

Frequency, Hz		63	125	250	500	1000	2000	4000	8000	dB(A)
Octave band sound po	wer level, dB	118	113	109	106	103	99	92	82	108
Frequency, Hz	63	125	250	500	1000	200	00 4	000	8000	dB(A)
ISO 9613-2	56.1	47.8	40.9	38.9	37.0	30.	8 1	5.1	-	42
Wave Solution	59.7	52.0	43.3	40.4	37.1	30.	0 1	8.9	•	43
Harmonoise	59.9	52.2	43.8	40.5	38.0	31.	3 2	1.1	4.8	44

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – ENGINEERING METHODS

Frequency, Hz		63	125	250	500	1000	2000	4000	8000	dB(A)
Octave band sound pov	ver level, dB	118	113	109	106	103	99	92	82	108
Frequency, Hz	63	125	250	500	100	0 20	00 4	000	8000	dB(A)
ISO 9613-2	46.5	41.0	35.4	31.1	25.3	14.	0 -		-	33
Wave Solution	49.2	43.8	39.0	32.3	19.1	16.	2 3	.3	-	34
Harmonoise	49.4	44.1	39.6	33.1	19.0	19.	1 3	.4	4.9	35

1500 m; 1.5 m above hard ground

22 October 2013

AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – ENGINEERING METHODS

Frequency, Hz		6	53	125	250	500	1000	2000	4000	8000	dB(A)
Octave band sound por	wer level, dB	1	18	113	109	106	103	99	92	82	108
Frequency, Hz	63	125	2	50	500	1000	200	0 4	000	8000	dB(A)
ISO 9613-2	46.5	36.8	3	0.4	27.1	23.5	12.	5-		-	29
Wave Solution	46.8	39.4	3	0.9	24.8	25.5	14.	2 3	.4	•	30
Harmonoise	47.1	39.8	3	1.5	25.0	26.6	17.0) 5	.7	4.9	31

1500 m; 1.5 m above grassland

22 October 2013

AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – EXACT METHODS

$$2ik_0\frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} + k_0^2\left(n^2(r,z) - 1\right)u = 0$$

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – EXACT METHODS

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

EXAMPLE – EXACT METHODS

22 October 2013 AWMA/OS Noise Conference, Toronto

Available Models – A. Bullmore – Chapter 3 Wind Turbine Noise

Characteristic	Engineering			Hybrid modellin	g methods			
				Approximate / a	analytical	Numerical		
	NORD2000	HARMONOISE	ISO 9613	Ray tracing	WAVE	PE	GFPE	
Computing time	Fast	Fast	Fast	Fast	Fast	Slow	Medium	
(Present)								
Accuracy	High	High	Poor	Medium	Exact	Very good	Good	
(Relative)				11-11-11-11-11-11-11-11-11-11-11-11-11-				
Ideal frequency	All freq	All freq	All freq.	High frequency	All	Low frequency	Low and mid	
range						and the second second second second	frequency	
Range-dependent	NO	NO	NO	NO	NÖ	NO	YES	
conditions								
Shadows and	NO	NO	NO	NO	NO	NO	NO	
caustics								
Elevated sources	YES	YES	YÉS	YES .	YES	YES	NO	
Met Conditions	YES	YES	~	NO	NO	YES	YES	
Banded freq	YES	YES	YES	NO	NO	NO	NO	

22 October 2013

22 October 2013 AWMA/OS Noise Conference, Toronto

