

Advances in Acoustic Monitoring

Air and Acoustic Monitoring Conference
Air & Waste Management Association – Ontario Section

Corey D. Kinart, MBA, PEng HGC Engineering

October 25, 2016

Overview

- Why we conduct acoustic monitoring
- How we used to do it
- Evolving uses
- Measurement devices
- Power
- Memory
- Data transfer
- Limitations

Why Conduct Acoustic Monitoring?

- Can be outdoor, indoor, under water...
- Measure sound levels:
 - Over extended periods (average, maximum, minimum, etc.)
 - During times when attended measurements are not practical
 - In places where attended measurements are not possible
 - To capture specific events of interest

Other Applications

- Bio-acoustical monitoring (terrestrial and marine)
- Transportation hub/corridor management (airports, seaways)
- Defence/security applications
- Mechanical system health & failure detection
- Medical applications
- Many more

Advances in Acoustic Monitoring

- A more powerful tool
- Thanks to technological advances in:
 - Measurement devices
 - Digital memory
 - Power systems
 - Compact cellular communications

The Days of Old & New

- Environmental noise/vibration monitoring is certainly not new
- BUT, earlier systems have typically been permanent installations
 - Bulky
 - Grid power
 - "Hard-wired"

The Days of Old & New (cont'd)

- "Old" systems had plenty of drawbacks
 - Size
 - Power needs
 - Monitor/data integrity

Evolving Uses

Noise Complaint Investigations

Construction Vibration Monitoring

- Baseline Noise Studies
- Wind Energy Noise Assessments...

Measurement Device

- Central component of any acoustical monitoring system
 - Greater dynamic range
 - Remote configuration
 - Triggering threshold

Self-test microphone integrity

Equipment Integrity

Power

- Advances in portable solar systems
 - Decreasing hardware costs
 - Extended deployment in remote areas
 - No need for regular power maintenance
 - Improved resource efficiency
- Monitor restarts after power interruption

Memory

- Decreasing hardware costs
- Built-in or swappable
- Significant increase in capacity
- Allows tremendous amounts of data
 - Triggered or continuous audio recordings

Data Transfer

- Hard-wired, Wi-Fi or cellular modem
 - Timely (if not real time) analysis
 - Ensure equipment operating correctly
 - Can avoid a redeployment

Limitations

- Solar Power
 - Must have sufficient solar exposure
 - Size/weight can be challenging to deploy in very remote areas
 - Non-stealth
- Cellular Modems
 - Power hungry
 - Secondary failure point
 - Usually not fast enough for real-time downloading

Lessons from Field Experience

- Too much data can be a bad thing
 - Carefully plan data collection
 - Ensure efficient use of more advanced systems

Don't Let This Happen To You

Any Questions?

