FLIR Optical Gas Imaging Technology AWMA-MOECC Workshop Sarnia

> Jeremy Bartel Rob Milner FLIR Systems Ltd.

> > November 5, 2014

.

\$FLIR

\$FLIR

Presentation Agenda

- FLIR Introduction
 How Does The Camera Work?
- 3. Gas Detection Limits
- 4. Applications

EXPLORE- PRODUCTS- ABOUT- SUPPORT- Q

Turn Your Smartphone Into A Brilliant Phone

Thermal Imaging Camera for iPhone

EXPLORE

FLIR in the News

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

The World's Sixth Sense"

Ô

Optical Gas Imaging with NEW GF Series

FLIR Optical Gas Imaging GF Series Handhelds & G series "fixed"

Regulatory Customers

Clients

FLIR Gas Imaging History

GasFindIR

GasFindIR HSX

GF3xx Series

- May 2005 ThermaCam GasFindIR
 - Worlds 1st portable "passive" optical gas imager
 - ISA-Fugitive Emissions League City, TX
- Feb 2008 ThermaCam GasFindIR HSX
 - Improved features
 - High Sensitivity Mode (HSM)
 - Extended Ranges
 - Longer Life Li-Ion Batteries
- May 2009 GF Series
 - Completely New Design
 - based on customer feedback and input
- September 2014 Fixed OGI systems
 - 3 models
 - 2 OEM models, 1 pan/tilt complete unit

How does it work?

How Does the GF Series "See" Gas

- The camera employs a spectral filter designed to transmit in a region of the IR spectrum that is coincident in wavelength with vibrational/rotational energy transitions of VOC molecular bonds.
- These transitions are typically strongly coupled to the field via dipole moment changes in the molecule, and are common to many types of gases and vapors.
- With this in mind, the camera's detection sensitivity to a wide variety of gases and vapors is extremely small.
- Thermally, the camera's sensitivity is <30mK when FLIR's adaptive temporal filter is engaged.

How Does the GF Series "See" Gas

Infrared Gas Spectra

13 * Data intentionally skewe

ophetabyldistextocation"

Infrared Gas Spectra

14 * Data intentionally skewe

GF Series

Detection Limits

How many ppm will it see?

Instantaneous Volume (3D)? Gas Makeup (Species)? Exact Gas Concentration(s)? Wind Speed? Etc...

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

Is there any way to report detection in ppm?

••••••

17

- If we knew:
 - Exact gas makeup and concentration(s)
 - Exact gas cloud thickness
 - Exact wind speed...

?? ppm*m

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

......

How Do We Report Detection Limits?

- Minimum Detectible Leak Rates (MDLR)
 - Mass flow rate (grams per hour)
 - The minimum size leak you can see, given certain controlled parameters

• API Laboratory Parameters

- A given distance to the leak
- Known concentration of gas
- Known wind speed
- Known leak rate

Some of the tested gases

19

- Benzene
- Butane
- Ethane
- Ethanol
- Ethylbenzene
- Ethylene
- Heptane
- •Hexane
- Isoprene
- •MEK

- Methane
- Methanol
- MIBK
- Octane
- Pentane
- •1-Pentane
- Propane
- Propylene

The World's Sixth

- Toluene
- •Xylene

Minimum Detectible Leak Rates (MDLR's)

GasFindIR Camera - Tested OCT 2005		MDLR's in	Wind Speed in MPH			
Compound	g/hr	Grams/Hr				
Benzene	3.5	Compound	0	2	5	
Ethanol		Benzene	3.5	17.5	38.6	
Ethylbenzene	1.5	Ethanol	0.7	3.5	14	
Hexane	1.7	Ethylbenzene	1.5	7.6	17.5	
Isoprene	8.1	Heptane	1.8	4.8	8.4	
Methanol	3.8	Hexane	1.7	3.5	8.7	
MEK	3.5	Isoprene	8.1	14.3	38.8	
МІВК		Methanol	3.8	7.3	24.3	
Octane	1.2	MEK	3.5	17.7	31.8	
Pentane	3.0	MIBK	2.1	4.9	13.3	
Toluene	3.8	Octane	1.2	3.4	8.7	
Xvlene	1.9	Pentane	3.0	6.1	17.7	
Butane	0.4	1-Pentene	5.6	19.7	43.8	
Ethane	0.6	Toluene	3.8	5.3	14.3	
Methane	0.8	Xylene	1.9	9.1	18.9	
Propane	0.4					
Ethylene	4.4	D' (2			

Distance = 3m

The World

Distance = 3m, Wind = 0mph

2.9

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purpose. We find the standard in "standard" mode without the added benefit of High Sensiti

Propylene

Minimum Detectible Leak Rates (MDLR's)

Methane-vs- Distance -vs- Optic

⁺MDLR in g/hr	Lens Back Focal Distance in mm									
Gas	25				50			100		
Standoff distance (m)	3	6	12	3	6	12	3	6	12	
Methane MDLR	0.8	1.4	4.0	0.4	0.8	1.6	±0.3	0.5	0.8	
+MDLR was measured at 0 wind speed with no N2mixing.+Lower limit of delivery system.										

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization finces or purpose: "Your Concentrative OS law is prohibited: In "standard" mode without the added benefit of High Sensiti

Leak Rate = 3 grams/hour

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

Proprietary ©2014 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

By Definition ... this is NOT To we ark Sense"

From 20' away...it's still a leak

25

Taback et al., 1997, API Publ 310, "Analysis of Refinery Screening Data"

Main Applications

- Gas Storage
 - Above & Below Ground
 - Vents, Vacuum breakers, Relief Valves

FLIR GF306 Ammonia Leak Examples

FLIR GF320 Methane Leak Examples

Main Applications

- Processing Plants
 - LDAR & Non-LDAR Components

Flares – unburned VOC

Main Applications

- Compressor Stations
 - Seal Leaks
 - Flanged Connections
 - PRV's

Compressors

Valves

Main Applications

- Pipelines
 - Transmission
- Gas Mains
 - Distribution

Automated Gas Imaging

Intelliview – Calgary, AB

More **Applications**

AUTO HIST WHITE \$FLIR"

Flares

Tank Levels

Welded pipe

Steam Traps

Motors

Insulated pipe

Entire Vessel Inspection

Exchangers / Fin Fans

Valves / Relief Valves

Electrical Connections

Unit Start Up Applications

Temp. Measurement (GF320)

•

•

•

•

•

•

•

•

•

•

•

FLIR OGI Options

- Handheld, battery powered, portable systems:
 - Hydrocarbon VOC, MEK, many others (GF320, GF300)
 - Ammonia, SF6, Vinyl monomer (GF306)
 - CO (GF346)
 - CO2 (GF343)
- Automated, hard wired, permanent installations:
 - Hydrocarbon VOC (G300a requires integration, G300pt, 3rd party integrated systems, eg. Intelliview)
 - Most other gases (A66xx requires integration)

39

Questions?

Jeremy.Bartel@FLIR.com X45, 800 613 0507 Ontario Manager

Rob.Milner@FLIR.com X38, 800 613 0507 Automated Systems

