

Leadership in ecoInnovation

Work of the International Energy Agency Bioenergy – Energy Recovery from Solid Waste

AWMA-OS Toronto, Ontario October 6, 2010

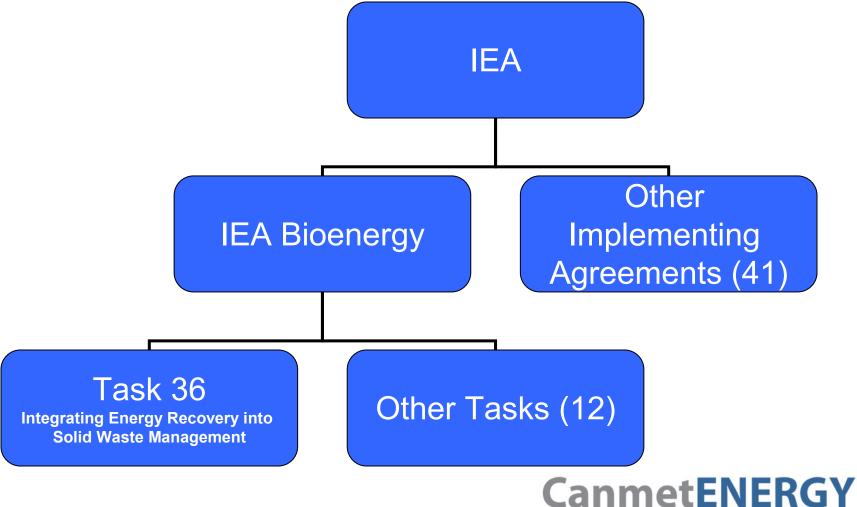
René-Pierre Allard

IEA Bioenergy Backgrounder

- Initiated in 1978 by the IEA
- Early focus on RD&D now shifting towards
 Deployment at larger scale (for some Tasks)
- Broad scope of work:
 - Biomass resources, supply systems, conversion platforms and end products
- Emphasis on international collaboration and shared management of Tasks
- Tasks have duration of 3 years

IEA Bioenergy Vision

To achieve a substantial bioenergy contribution to future global energy demands by accelerating the production and use of environmentally sound, socially accepted and costcompetitive bioenergy on a sustainable basis, thus providing increased security of supply whilst reducing greenhouse gas emissions from energy use.


Trondheim Energi Fjernvarme AS, Trondheim, Norway

Organizational Structure of the IEA

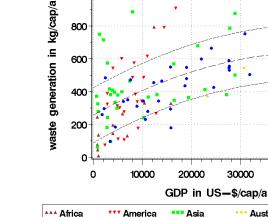
Leadership in ecoInnovation

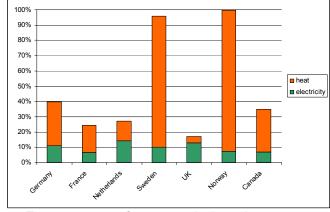
Task 36 – Integrating Energy Recovery into Solid Waste Management

- Members
 - Canada, France, Germany, Italy, Sweden, Norway, UK (lead)
- Objectives
 - Share information between participating members
 - Promote deployment of environmentally sound energy recovery technologies
 - Stimulate interaction between RD&D programs, industry and decision makers
 - Assist non-participants in adopting appropriate waste management practices to improve environmental standards
 - Identify and interact with appropriate international organizations
- Collaboration with other Tasks

Scope of Work for 2010-2012

- Identify best ways to use heat from waste
- Review policies on monitoring of measurement of the biogenic content of waste
- Techno-economic assessment of current waste processing approaches and identification of energy recovery options
- Review of cost effective small-scale systems
- Life cycle analysis of waste management and energy recovery options
- Management of the residue from energy recovery
- Revision and update of work on fine particulate emissions


Leadership in ecoInnovation


Report on Task 36 2007-2009 Activities

Status of solid waste management in member countries

Source: Task 36 2007-2009 End of Task Report

Energy recovery from municipal solid waste

30000

40000

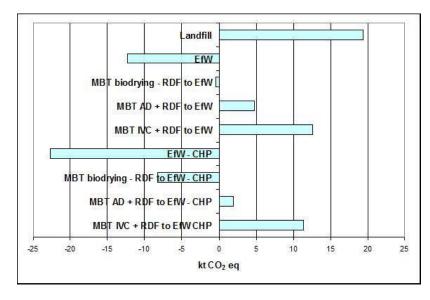
Australia

50000

· · · Europe

Source: Task 36 2007-2009 End of Task Report

> Energy recovery from waste incineration as percentage of the heat content of the input



Report on Task 36 2007-2009 Activities

- Impacts of managing residual municipal solid waste
- Overview of technologies used for energy recovery
- Study tour of Japan facilities

Green house gas impact of various management approaches

Source: Task 36 2007-2009 End of Task Report

Leadership in ecoInnovation

Summary

- International collaboration and pooling of resources is beneficial:
 - Access to varied and valuable policy, regulatory, finance, technical and cultural information from member countries and others
 - Opportunity to learn from real world examples

Leadership in ecoInnovation

Thank you

Contact:
René-Pierre Allard
+1-613-947-2116
rpallard@nrcan.gc.ca

IEA links of interest: www.ieabioenergy.com www.ieabioenergytask36.org

Leadership in ecoInnovation

