

bringing materials to *life*

Green Fuels Kicking the Coal Habit

A&WMA, Oct 6, 2010

Renewable Energy – Biomass is Different

- Solar
 - The sun shines BUT not all the time
- Wind
 - The wind blows BUT not all the time
- Biomass
 - Fuel must be produced BUT can be stored

Did you know? According to a BIOCAP Canada Foundation study, solid fuel biomass yields the greatest carbon savings for the dollar compared to wind, solar, and ethanol.

Challenge 1: Producing biomass fuels

Challenge 2: Cost of Biomass Fuels

Fuel Type	Cost per Gigajoule
Gasoline	\$24
Natural Gas	\$5-\$12
Grown Biomass	\$6-\$10
Coal	\$3-\$4
Coke	\$2-\$3

Note: Coal releases about 90 kg CO_2/GJ ; a "Cap & Trade" cost of \$50/tne CO_2 will add about \$4.5/GJ to the cost of coal.

Challenge 3: the Quality of Biomass as a Fuel

Characteristic	Coal	Biomass
\$/GJ	\$3-\$4	\$6-\$10
Energy Density	32 GJ/m3	13 GJ/m3
Shipping	Boat	Truck
% Ash	20%	3-10%
Ash Chemistry	Useful	Neutral
Availability	High	Low-Moderate
CO ₂ Emissions	100%	<10%
Other Emissions	Present	TBD (expected to be low)
Storage	Outdoor	Covered?

Lafarge Objectives

- Develop <u>sustainable</u> green fuels to meet expected carbon cost programs
- Sustainable means all 3 of...
 - Economic
 - Environmentally Sound
 - Socially positive
- Three projects
 - Life Cycle Assessment
 - Biomass Trial
 - Green Fuel Standard

Life Cycle Assessment

- Purpose: can we produce biomass fuels from crops in a sustainable manner and will they qualify for carbon credits?
- Plant perennial crops and determine
 - Water usage
 - Carbon balance
 - Yields
 - Economics
 - Habitat Effects
- Ministry of the Environment, Climate Change Branch co-funder
- Academic Partners
 - Queen's Institute for Environment and Energy Policy
 - University of Toronto
 - University of Guelph

Big Blue Stem, Little Blue Stem, Switchgrass, Fallow

LAFARGE So, how does one grow fuel?

- Lafarge has tried it from seed to flame.
- Following are some photos of the process and what worked and what didn't and what we'd do differently
- The biomass testing is actively underway today
- Open House tomorrow!

LAFARGE Planting and Yield

Harvesting

EAFARGE Baling and transportation

EAFARGE From Bale to Shredded Biomass

LAFARGE Shredded & Mixed Biomass

Biomass Ready to Process

LAFARGE Moving Biomass from Field to Fuel

Injection

A Green Fuel Standard

- What makes a fuel "green"
- Can a fuel be "green" in one combustion process and not in another? (e.g. home fireplace compared to cement kiln or power boiler)
- What if 5 pollutants decrease and one increases?
- What qualities of fuel lead to emissions? Can we conduct lab testing rather than full scale testing?
- Can we adopt a LEED-like approach to grading fuels?
- Can CofAs use this Standard?
- How do we consider the upstream environmental aspects of fuel production?

Thank you to Natural Resources Canada and the Ontario Ministry of the Environment for their Financial and In-Kind Support

Thank you to Performance Plants, Mesa Reduction & Engineering, Queen's University, the Sustainable Bioeconomy Centre at Queens, the Queen's Institute for Energy & the Environment, Golder Associates, RWDI Inc., University of Guelph Kemptville, Hartacre Farms, Triland Environmental, B&B Mechanical, and many, many others for their contributions to this project.