

ADVANCED MONITORING TECHNOLOGIES THE NEXT FRONTIER

LAKI TISOPULOS, PhD, PE

Deputy Executive Officer, Engineering and Permitting

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT, DIAMOND BAR, CALIFORNIA

OUTLINE

- South Coast Air Quality Management District who we are and what we do
- Optical Remote Sensing
 - SCAQMD Fenceline Monitoring and Optical Remote Sensing Program
 - Technology Demonstration Studies
 - Controlled-release Experiment
- Low-cost Air Quality Sensors
 - Air Quality Sensor Performance Evaluation Center (AQ-SPEC)
 - Sensor Network Pilot Studies
- Future work

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

http://www.aqmd.gov/

SCAQMD Headquarters Diamond Bar, California

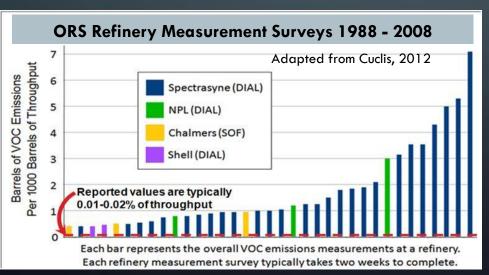
- 4-county region
- 10,000 sq. miles
- Over 17 million residents
- Over 11 million gasoline vehicles
- Over 261,000 diesel vehicles
- Combined Ports of Long Beach and Los Angeles - nation's largest cargo gateway
- Regulate over 27,000 stationary sources
- Refineries, power plants, landfills, fueling stations

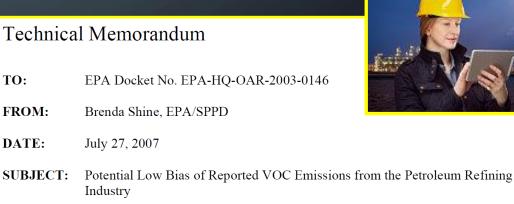
SCAQMD Air Monitoring Station (N Main Street, Los Angeles)

SCAQMD Laboratory in Diamond Bar

0

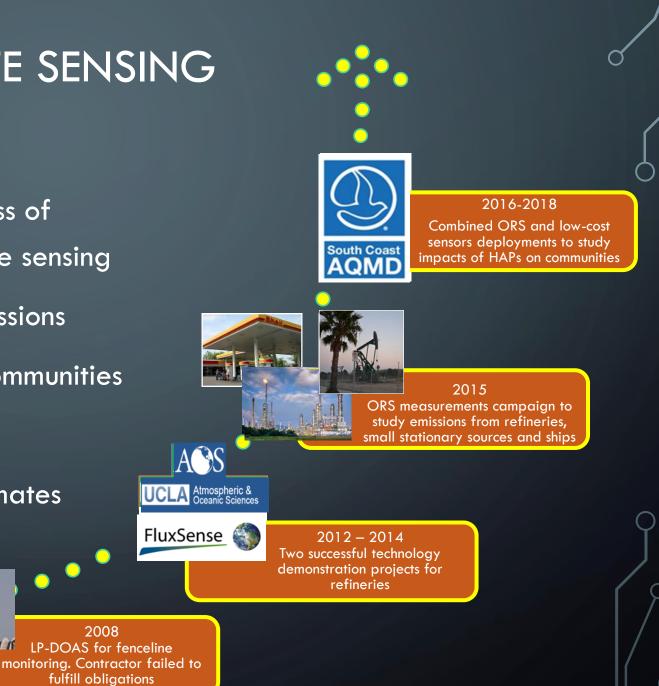
OPTICAL REMOTE SENSING


MOTIVATION



- Optical Remote Sensing (ORS) technologies evolved significantly in the past decade
- Fully automated / continuous / no calibration required
- Ideally suited for long-term fenceline monitoring. Can characterize and quantify emissions
- Can be deployed from various mobile platforms for rapid leak detection, concentrations mapping and emission flux measurements
- Measured VOC emissions can be higher (up to an order of magnitude) than those from emission

inventories



SCAQMD OPTICAL REMOTE SENSING MONITORING PROGRAM

- Demonstrate feasibility and effectiveness of fenceline monitoring using optical remote sensing
- Improve LDAR program and reduce emissions
- Provide real-time alerts to downwind communities
- Measure actual facility-wide emissions

 \bigcirc

• Improve existing emission inventory estimates

2015 SCAQMD OPTICAL REMOTE SENSING STUDY

• <u>Project 1</u>: Quantify fugitive emissions from large refineries

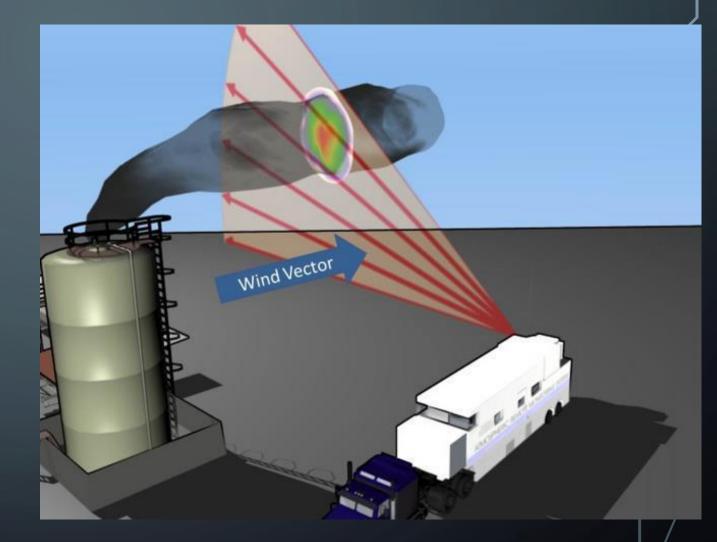
• <u>Project 2</u>: Quantify gaseous emissions from small point sources

<u>Project 3</u>: Quantify stack emissions from marine vessels/ports

METHODS: SOLAR OCCULTATION FLUX (SOF)

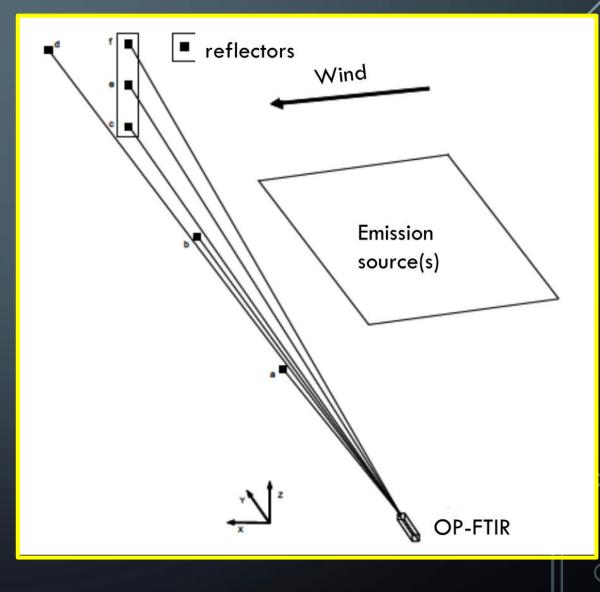
• Mobile measurements to record total mass of molecules along path traveled

- Total mass and wind data used to calculate flux emissions (kg/s)
- Also can be used identify "hot-spot" areas inside the facility
- Light source direct sunlight
- Daylight measurements only
- Accurate wind data obtained using SCAQMD's LIDAR



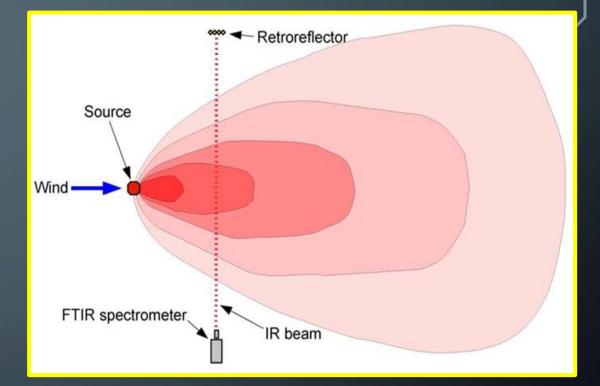
METHODS: DIFFERENTIAL ABSORPTION LIDAR (DIAL)

- Vertical scans enable plume mapping and flux calculation
- Combine integrated concentration with simple wind field to obtain flux
- Can measure away from source
- Light source IR or UV laser
- Daytime and nighttime measurements



METHODS: VERTICAL RADIAL PLUME MAPPING (VRPM)

OP-FITR system is positioned downwind from the source


- Multiple retroreflectors strategically placed
 to cover outflow from the source
 - VRPM combines path-averaged concentrations from OP-FITR measurements with wind speed and direction to calculate emission fluxes
 - Permanent installation

METHODS: AREA SOURCE TECHNIQUE

- Single light path OP-FITR system is positioned downwind from the source
- Retroreflector is placed so emission plume crosses the light path
- Path-averaged concentrations from OP-FITR measurements, wind speed and direction used to model emission fluxes
- Quick installation for short-term deployments

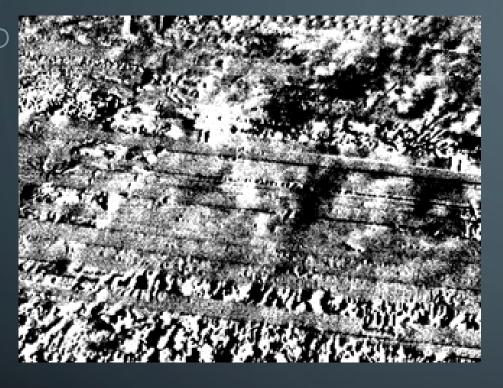
PROJECT 1: QUANTIFY FUGITIVE EMISSIONS FROM LARGE REFINERIES

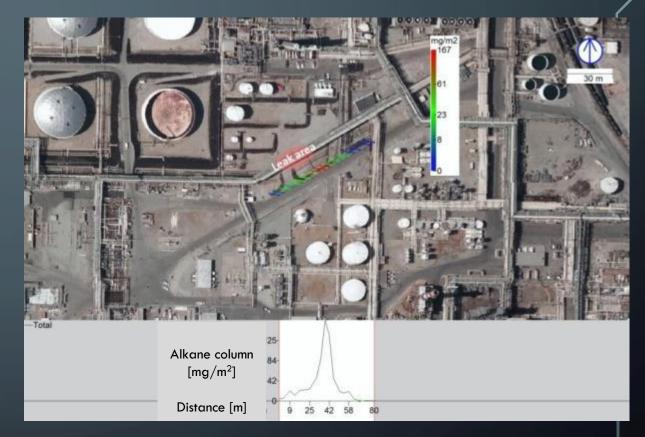
- National Physical Laboratory (NPL)
 - DIAL
 - Stationary daytime and nighttime measurements
 - I-week study at 1 refinery
 - Facility-wide emissions of non-methane VOCs, BTEX
 - Ideal for field validation

FluxSense

• SOF + FTIR + DOAS

- Mobile measurements (daytime only)
- <u>5 week study at 6 refineries in the SCAB</u>
- Facility-wide emissions of methane, non-methane VOCs, NO₂, SO₂, BTEX
- Atmosfir Optics
 - VRPM Using Open-path FTIR
 - Large installation, continuous (24/7) measurements
 - 5-week study at 1 refinery
 - Emissions of methane, non-methane VOCs
 - EPA OTM-10 method
 - Complements mobile and other short-term observations

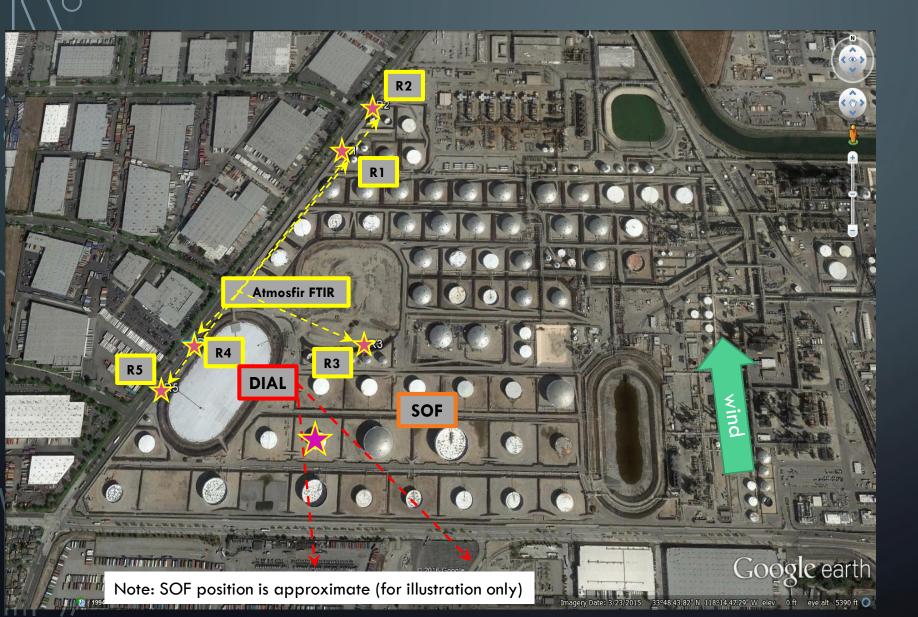

SOF MEASUREMENTS ALONG REFINERY FENCELINE


ALKANES AND BTEX DOWNWIND OF A REFINERY

DISCOVERY OF UNDERGROUND LEAK FROM A CORRODED PIPE

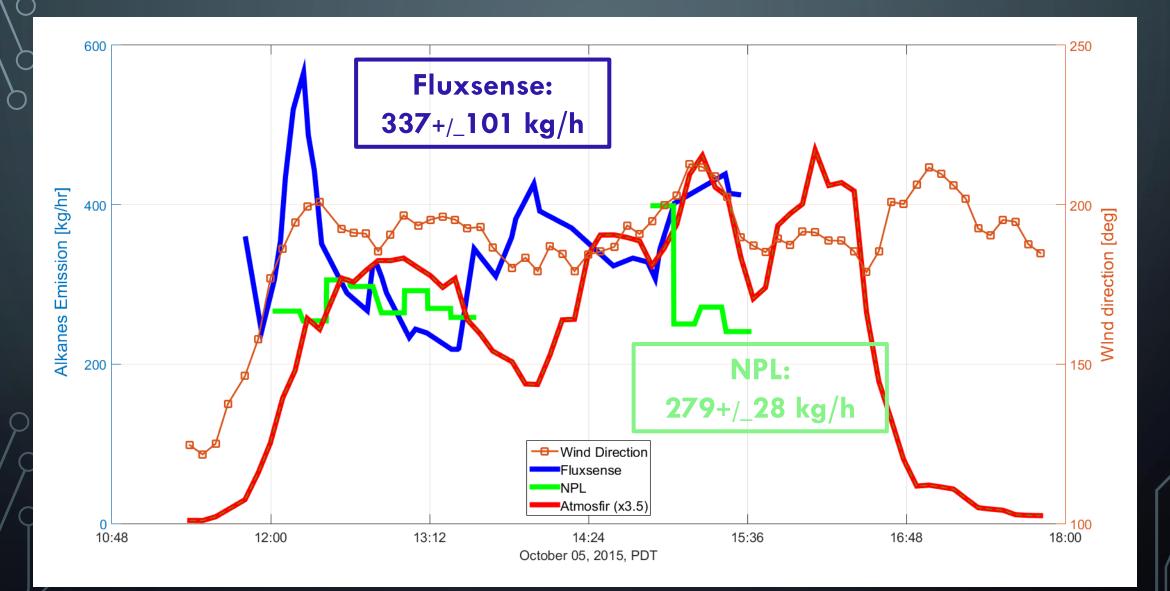


- September 30, 2015, at ~4:00pm
- Fluxsense discovered a leak from a corroded underground pipe
- Discovery was made while driving inside the facility
- FLIR images/videos confirmed emissions from the ground



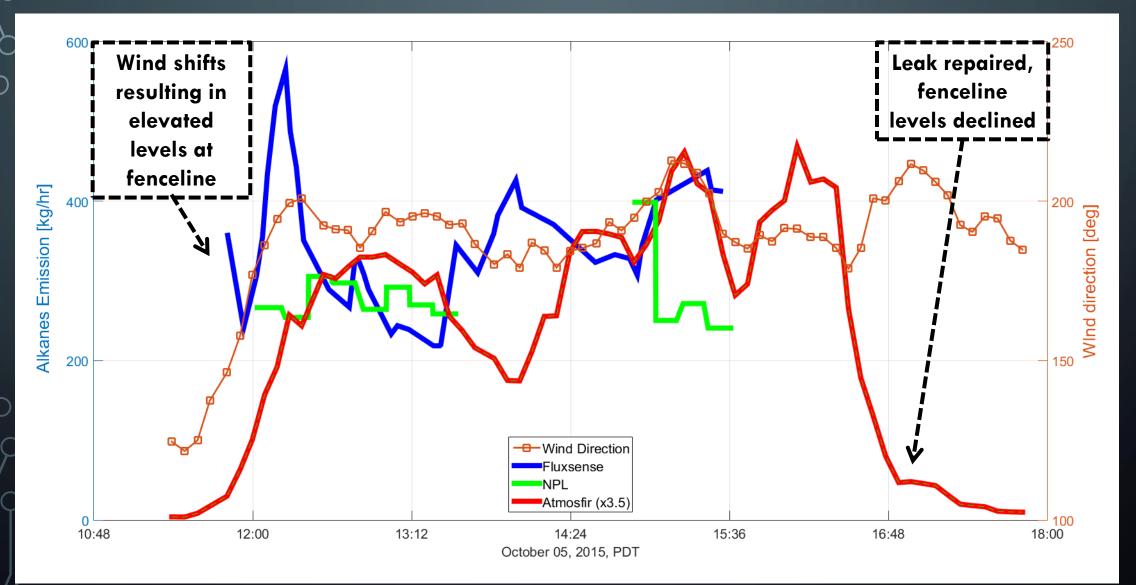
- Measured alkanes concentrations: ~70,000 ppb
- Average VOC emissions: 31 kg/h

CO-LOCATED MEASUREMENTS AT REFINERY TANK FARM



MONITORING OF A TANK LEAK EVENT

- October 5, 2015
 11:30am-4:30pm
- Emissions from a tank were observed by all three ORS technologies
- Fenceline concentrations of alkanes decreased dramatically after emissions stopped

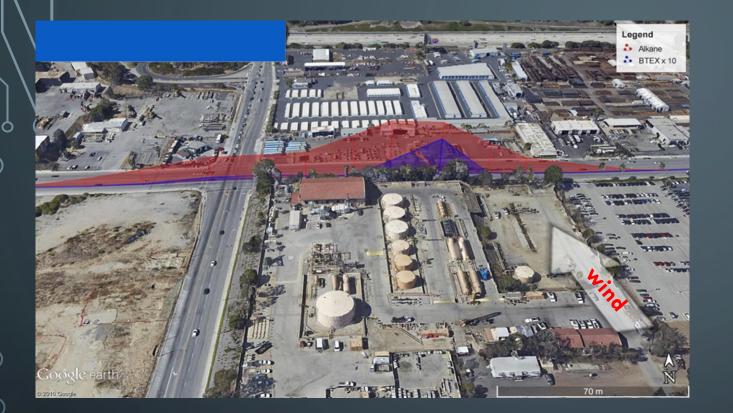

EMISSIONS OF ALKANES FROM A LEAKING TANK

0

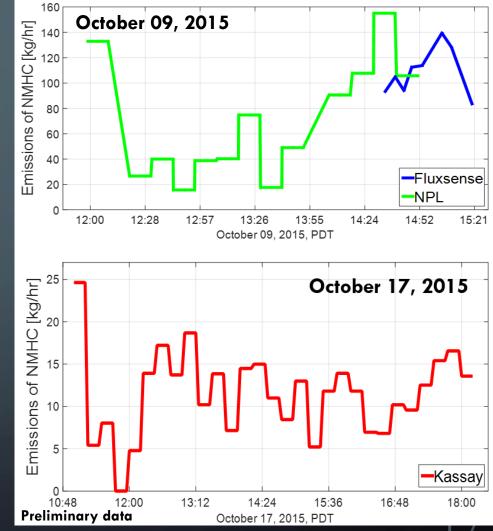
 \frown

DETECTION OF ELEVATED ALKANES AT REFINERY FENCELINE

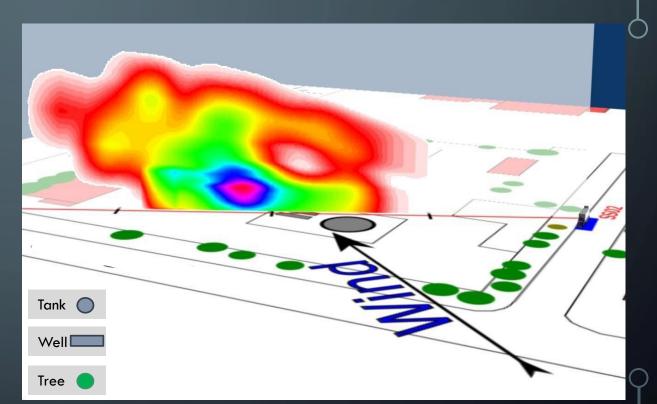
PROJECT 2: QUANTIFY GASEOUS EMISSIONS FROM SMALL POINT SOURCES


- FluxSense
 - SOF + Extractive FTIR + DOAS
 - Mobile measurements (daytime only)
 - <u>5 week study of ~100 small sources</u>:
 - Oil wells
 - Intermediate oil treatment facilities
 - Gas stations
 - Other small sources
 - Methane and non-methane VOCs, BTEX
- National Physical Laboratory (NPL)
 - Differential Absorption Lidar (DIAL)
 - Stationary daytime and nighttime measurements
 - 1 week study at selected sources
 - Methane and non-methane VOCs
 - Ideal for field validation

Kassay Field Services

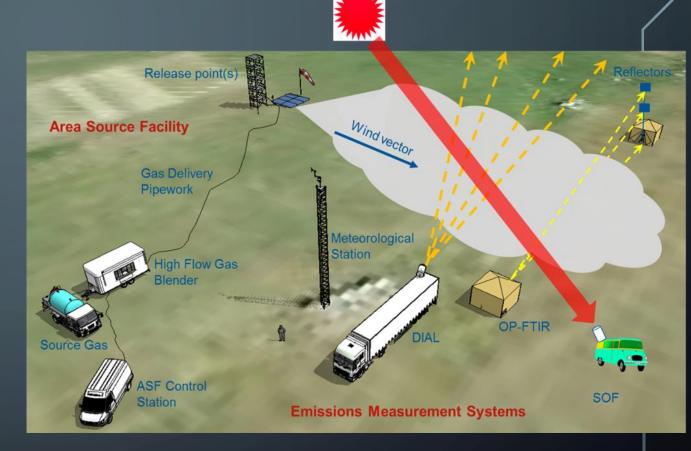

- Open-path FTIR + reverse plume modeling
- Stationary daytime and nighttime measurements
- 5 week study at ~50 small sources
- Methane and non-methane VOCs, BTEX
- OP-FTIR using EPA TO-16 method

EMISSIONS FROM A SMALL OIL TREATMENT FACILITY


24 mobile SOF surveys over 5 weeks

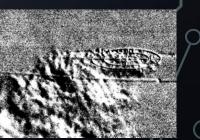
- Elevated NMHC emissions detected during all monitoring days
- Good agreement between SOF and DIAL during co-located measurements
- FTIR not able to capture the entire plume, but useful for long-term trends

VISUALIZATION OF EMISSIONS FROM A SMALL OIL TREATMENT FACILITY

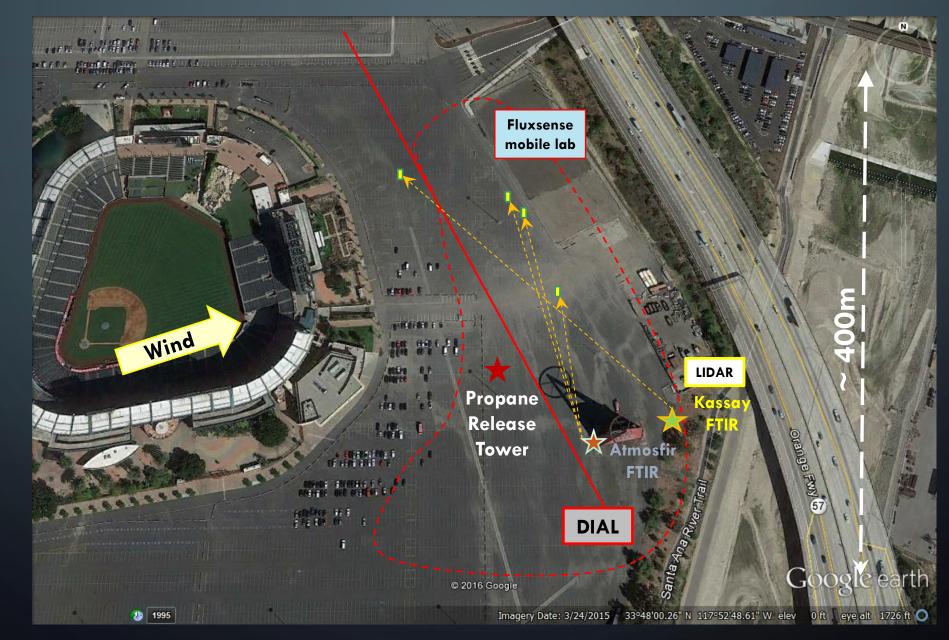


DIAL visualization of VOC emissions

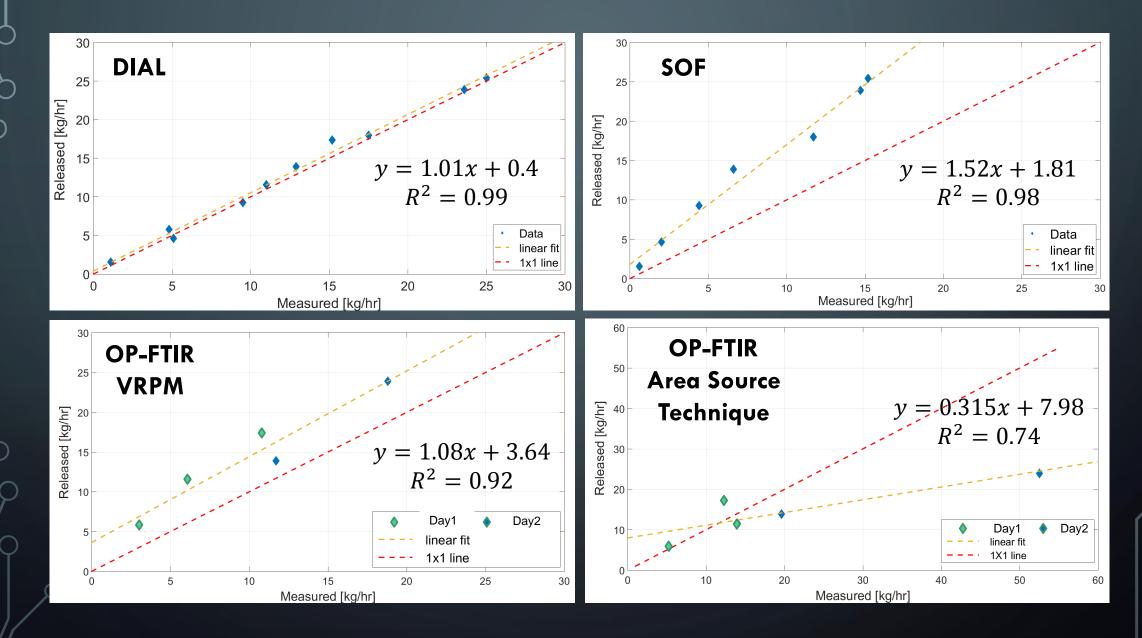
Storage tank is most likely the main source of emissions from the facility


CONTROLLED-RELEASE METHOD INTERCOMPARISON STUDY

- Conducted on October 12–13, 2015 inside the Angels' Stadium in Anaheim, CA
 - Complex urban environment
 - Near a major freeway
- NPL Area Source Facility (ASF) operated by SCAQMD staff
- Non-odorized propane released at various emission rates; each release lasted ~1 hour
- Release point heights: 3m, 6.4m, 7.9m
- Blind measurements performed by all ORS contractors
- Meteorological data collected by and shared with all vendors
 - SCAQMD operated LIDAR to provide accurate wind profile data



EXPERIMENTAL SETUP

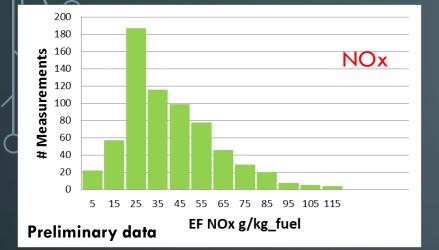


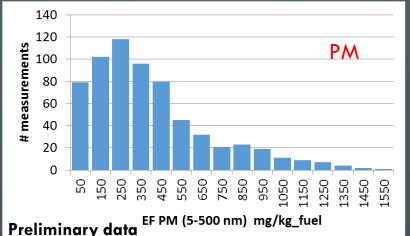
PROPANE PLUME VISUALIZATION

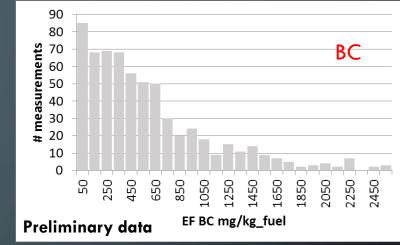
• FLIR video (October 13, 2015 3:41pm)

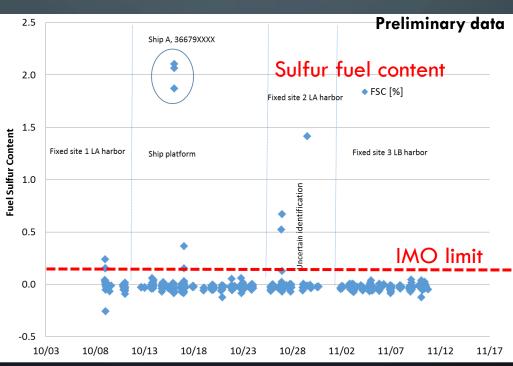
CONTROLLED-RELEASE STUDY: RESULTS

1

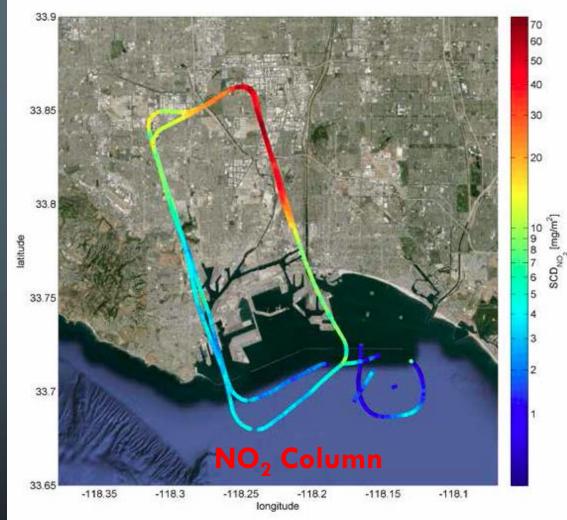

PROJECT 3: QUANTIFY STACK EMISSIONS FROM MARINE VESSELS


FluxSense


- Mini-SOF, DOAS and "traditional" methods
- Measurements of individual ships
- <u>4 week study at Port of Los Angeles and Port</u> of Long Beach
- Measurements performed
 - on-shore at fixed locations within POLA and POLB
 - off-shore from R/V Yellowtail provided by Southern California Marine Institute
- "Real world" emissions (g/s) of SO2 and NO2 and "actual" emission factors (g/Kg fuel burnt) of SO2, NOx and particulates from individual ships
- <u>692 ships sampled during the study</u>

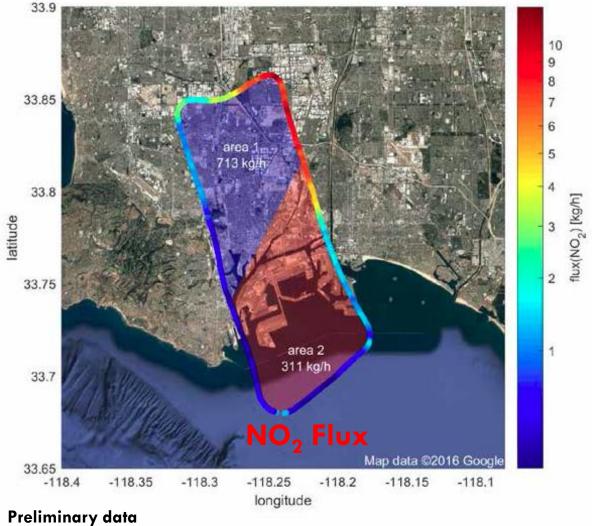


EMISSIONS FROM 692 SHIPS SAMPLED IN POLA AND POLB



AIRBORNE OPTICAL REMOTE SENSING MEASUREMENTS

MAX-DOAS Telescope boking out of pilot's window NAX-DOAS Spectrometer on the back seat


Preliminary data

Sunday, November 08, 2015

AIRBORNE OPTICAL REMOTE SENSING MEASUREMENTS

MAX DOAS Telescope boking out of pilot's window AX-DOAS Spectrometer o the back seat

Sunday, November 08, 2015

SUMMARY – OPTICAL REMOTE SENSING

- ORS techniques can provide:
 - Quick identification of potential leaks, offering substantial improvement of LDAR program or ISD systems
 - Detailed characterization of areas that contribute the most to measured emissions
 - Real or near-real time emission measurements
 - Improved emission inventories
- ORS methods are suitable for monitoring of emissions from large facilities as well as small sources
- Mobile ORS methods are effective way to screen large number of small sources quickly
- Good agreement between different ORS techniques during co-located measurements of "real-life" sources
- Strong correlations (R²) between released and measured emissions for all methods during controlledrelease study
- Strengths and weaknesses of each technology:
 - SOF: mobile measurements are ideal for routine surveys inside and outside facilities
 - DIAL: very precise and accurate, but not suited for long-term monitoring
 - OP-FTIR: can provide useful information on long-term variability of emissions and record fenceline concentrations of pollutants

LOW-COST AIR QUALITY SENSORS

BACKGROUND

- AQ-SPEC was established in July 2014
- Over \$500,000 investment
- Main Goals & Objectives
 - Provide guidance & clarity for ever-evolving sensor technology
 - Catalyze successful evolution/use of "low-cost" sensors
 - Minimize confusion
- Sensor Selection Criteria
 - Commercially available (American, European and Asian markets)
 - Real- or near-real time
 - Criteria pollutants & air toxics

FIELD DEPLOYMENT

September 2014: First sensor was deployed in the field

October 2016: Nearly 30 sensors have been field-tested

Rubidoux station (main) O Inland site

• Fully instrumented

I-710 station

 Near-roadway site
 Fully instrumented

<u>www.aqmd.gov/aq-spec</u>

Background

In an effort to inform the general public about the actual performance of commercially available "low-cost" air quality sensors, the SCAQMD has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC) program. The AQ-SPEC program aims at performing a thorough characterization of currently available "low-cost" sensors under ambient (field) and controlled (laboratory) conditions.

Main Goals & Objectives

- Evaluate the performance of commercially available "low-cost" air quality sensors in both field and laboratory settings
- · Provide guidance and clarity for ever-evolving sensor technology and data interpretation
- Catalyze the successful evolution, development, and use of sensor technology

Sensor Selection Criteria

- The sensor shall have potential for near-term use.
- · The sensor shall provide real- or near-real time measurements.
- The sensor shall measure one or more of the National Ambient Air Quality Standards (NAAQS) criteria pollutants, air toxics, pollutants of concern and non- air toxics. Examples of the targeted gases and particles are carbon monoxide (CO), ozone (O₃), nitrogen oxides (NO₄), particulate matter (PM), volatile organic compounds (VOCs), hydrogen sulfide (H₂S) and methane (CH₄).

FIELD TESTING RESULTS

PM Sensors

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approximate Cost (USD)	Time Resolution	Sensor vs FEM/FRM Method ¹
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	1 - 300 sec	$R^2 \sim 0.79$ to 0.94
0	Air Quality Egg (Version 1)	Optical	PM	~\$200	1 min	$R^2 \sim 0.0$
	Air Quality Egg (Version 2)	Optical	PM	~\$240	1 min	$PM_{2.5}$: $R^2 \sim 0.79$ to 0.85 PM_{10} : $R^2 \sim 0.31$ to 0.40
-	Alphasense (OPC-N2)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$450	15 sec	PM _{1.0} : $R^2 \sim 0.63$ to 0.82 PM _{2.5} : $R^2 \sim 0.38$ to 0.80 PM ₁₀ : $R^2 \sim 0.41$ to 0.60
G E	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	1 min	R ² ~ 0.65 to 0.85
	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	1 min	$R^2 \sim 0.65$ to 0.70
	MetOne (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	15 min	$R^2\sim 0.53$ to 0.67
-	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	1 min	$\begin{array}{l} \text{PM}_{1.0}; \ \text{R}^2 \sim \ 0.1 \\ \text{PM}_{2.5}; \ \text{R}^2 \sim \ 0.2 \end{array}$
	Perkin Elmer (ELM)	Optical	PM	~\$5,200	1 min	$R^2 \sim 0.0$
	PurpleAir	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	20 sec	PM _{1.0} : $R^2 \sim 0.93$ to 0.95 PM _{2.5} : $R^2 \sim 0.77$ to 0.92 PM ₁₀ : $R^2 \sim 0.32$ to 0.44
	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	10 sec	$R^2 \sim 0.65$ to 0.90
. 0	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	1 min	$R^2 \sim 0.80$ to $ 0.90$
	Speck	Optical	PM _{2.5}	~\$150	1 min	$R^2 \sim 0.32$
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	5 min	$R^2 \sim 0.82$

• Overall, PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Good correlation (R²) with "EPA approved" instruments
- However...
 - Sensor "calibration" is needed in most cases
 - Very small particles are not detected
 - Bias in algorithms used calculate particle mass

FIELD TESTING RESULTS

Gaseous Sensors

Sensor	Sensor Manufacturer Time Sen					
Image	(Model)	Туре	Pollutant(s)	Cost (USD)	Resolution	Method ¹
8	2B Technologies (PO ₃ M)	UV absorption (FEM Method)	O3	~\$4,500	10 sec	$R^2 \sim 1.00$
-	Aeroqual (S-500)	Metal Oxide	O ₃	~\$500	1 min	$R^2 \sim 0.85$
0	Air Quality Egg (Version 1)	Metal Oxide	CO, NO ₂ & O ₃	~\$200	1 min	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.40$ O ₃ : $R^2 \sim 0.85$
	Air Quality Egg (Version 2)	Electrochem	CO & NO ₂	~\$240	1 min	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.0$
	Air Quality Egg (Version 2)	Electrochem	O3 & SO2	~\$240	1 min	O_3 : $R^2 \sim 0.0 \text{ to } 0.20$ SO_2 : $R^2 \text{ n/a}$
	AQMesh (v.3.0)	Electrochem	CO, NO, NO ₂ , SO ₂ & O ₃	~\$10,000	1 - 15 min	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.75 \text{ to } 0.90 \\ \text{NO:} \\ \text{R}^2 \sim 0.75 \text{ to } 0.90 \\ \text{NO}_2: \text{R}^2 \sim 0.0 \\ \text{SO}_2: \text{R}^2 \sim 0.0 \\ \text{O}_3: \\ \text{R}^2 \sim 0.25 \text{ to } 0.55 \end{array}$
p	AQMesh (v.4.0)	Electrochem	CO, NO, NO ₂ & O ₃	~\$10,000	1 - 15 min	CO: $R^2 \sim 0.42$ to 0.80 NO: $R^2 \sim 0.0$ to 0.44 NO_2 : $R^2 \sim 0.0$ to 0.46 O_3 : $R^2 \sim 0.46$ to 0.83
	Perkin Elmer (ELM)	Metal Oxide	NO, NO ₂ & O ₃	~\$5,200	1 min	NO: $R^2 n/a$ NO ₂ : $R^2 \sim 0.0$ O ₃ : $R^2 \sim 0.89 \text{ to } 0.96$
	Smart Citizen Kit	Metal Oxide	CO, NO ₂	~\$200	1 min	CO: $R^2 \sim 0.50$ to 0.85 NO ₂ : $R^2 \sim 0.0$
24	Spec Sensors	Electrochem	CO, NO ₂ & O ₃	~\$500	1 min	CO: $R^2 \sim 0.84$ to 0.90 NO_2 : $R^2 \sim 0.0$ to 0.16 O_3 : $R^2 \sim 0.0$ to 0.24
١	UNITEC (SENS-IT)	Metal Oxide	CO, NO ₂ & O ₃	~\$2,200	1 min	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.33 \text{ to } 0.43 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.60 \text{ to } 0.65 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.72 \text{ to } 0.83 \end{array}$

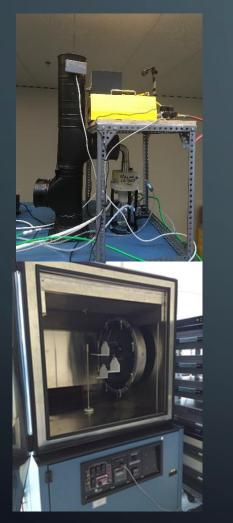
Overall, gaseous sensors showed:

- Acceptable data recovery
- Wide intra-model variability
- CO; NO; O₃ (when measured individually): good correlation with "EPA approved" instruments
- O₃ + NO₂: low correlation with "EPA approved" methods (potential O₃/NO₂ and RH interferences)
- SO_{2} ; H_2S : difficult to measure with available sensors
- VOCs: qualitative readings (not quantitative)

More results available on AQ-SPEC website

LABORATORY CHAMBER SYSTEM

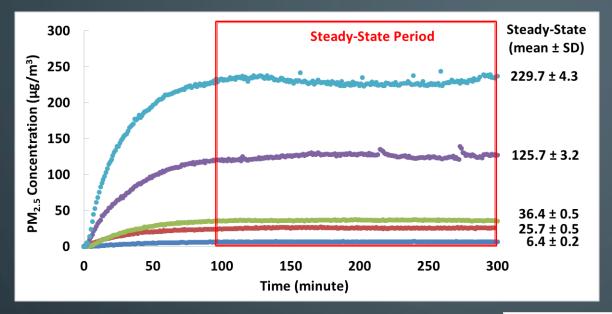
Main components:


- Professional-grade environmental test chamber
- Dry, gas- and particle-free air generation system
- Small PM generator & Large PM dispenser
- U.S. EPA approved FRM/FEM and BAT instruments
- Custom computer software (remote control, sequences, 24/7 operation)

LABORATORY TESTING

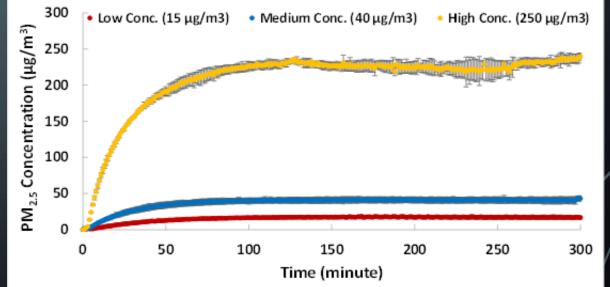
Aerosol Test

0



Gas Test

T and RH controlled: T (0-50 °C); RH (5-95%)


PM/GAS SENSOR TESTING

Stability

Reproducibility

SENSOR NETWORK: PILOT STUDY #1



- Monitor fugitive emissions from a Waste Disposal facility in Southern California
- 9 sensor nodes deployed at facility fenceline
- Wireless network / remote server
- Real-time PM_{1} , $PM_{2.5}$ and PM_{10} monitoring



SENSOR NETWORK: PILOT STUDY #1

• Dedicated website

- www.aqmd.meshify.com
- Real-time data logging, display, and mapping
- Data analytics
- Email and/or text alerts
- Project benefits
 - Correlate PM measurements w/ on-site activities
 - Measure PM levels before and after facility upgrades

SENSOR NETWORK: PILOT STUDY #2

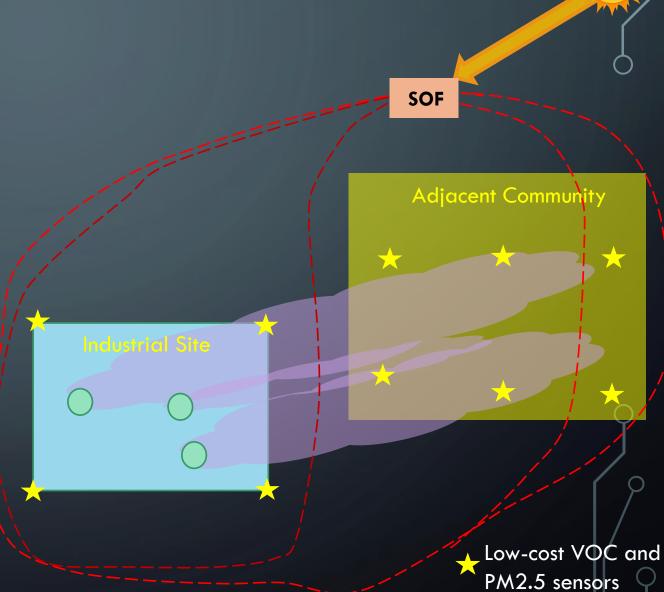
- 25 "low-cost" PM sensors deployed in the Redlands, CA area
- Real-time PM₁, PM_{2.5} and PM₁₀ monitoring
- Wireless network / remote server
 - Microsoft + Element Blue/Sensor Insight
- Project goals
 - Test sensor durability
 - Show ability to scale up in near future

Purple Air Sensors (\$180 / unit)

UPCOMING PROJECT: EPA SCIENCE TO ACHIEVE RESULTS (STAR) GRANT

 Provide California communities with the knowledge necessary to select, use and maintain low-cost sensors and to correctly interpret the collected data

• Four specific aims:


- #1: Develop educational material for communities
- #2: Evaluate / identify candidate sensors for deployment
- #3: Deploy selected sensors in California communities
- #4: Communicate the lessons learned to the public
- Three year study in collaboration with:
 - University of California Los Angeles (UCLA; Co-PI)
 - Sonoma Technology Inc. (STI; Co-PI)

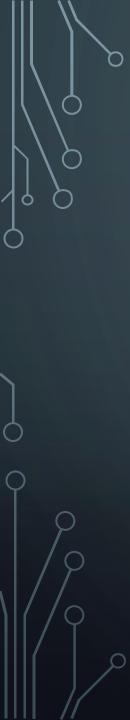
UPCOMING PROJECT: COMMUNITY-SCALE AIR TOXICS AMBIENT MONITORING

- Comprehensive 3-year study aiming to:
- Use of ORS methods to monitor HAP emissions from refineries and to estimate their annual VOC emissions
- 2. use of ORS methods and "low-cost" sensors for assessing the impact of industrial HAP emissions on surrounding communities.
- Mobile ORS detailed understanding of emissions and concentrations mapping (quarterly surveys)
 - "Low-cost" sensors network long-term monitoring of VOC and PM2.5 around fenceline and inside the community

ACKNOWLEDGEMENTS

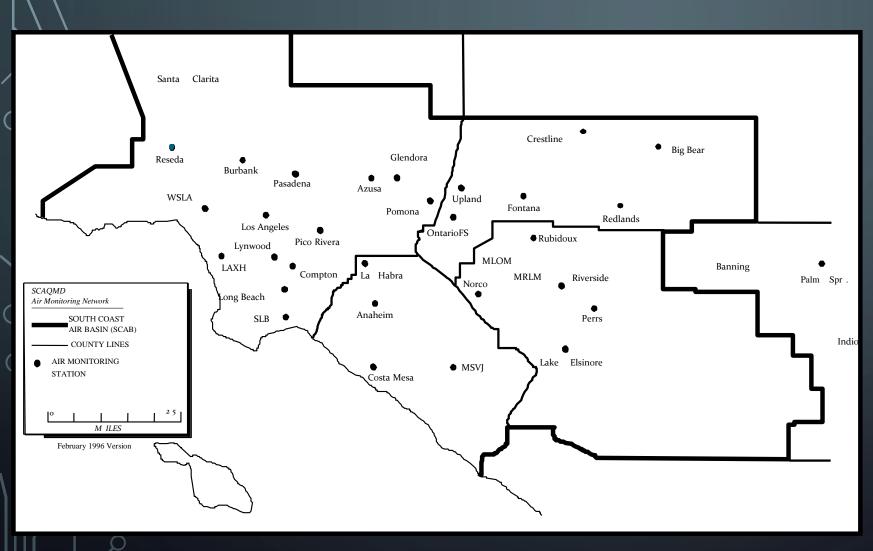
SCAQMD staff

- ORS Program: Andrea Polidori, Olga Pikelnaya
- AQ-SPEC Center: Andrea Polidori, Vasilios Papapostolou, Brandon Feenstra, Hang Zhang


• ORS contractors

- Johan Mellqvist, Jerker Samuelsson, Marianne Ericsson FluxSense Inc., San Diego, CA
- Rod Robinson, Fabrizio Innocenti, Andrew Finlayson
 National Physical Laboratory, Hampton Rd, Eddington, United Kingdom

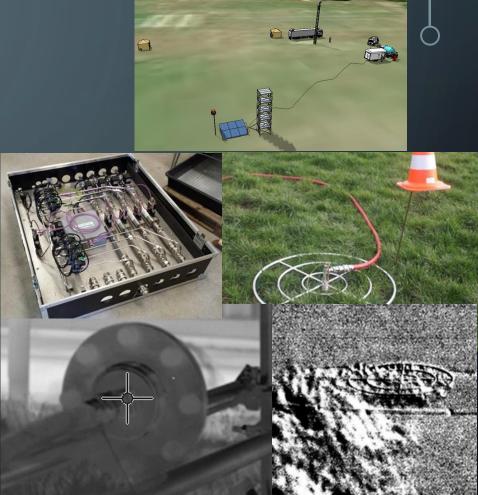
• Steve Perry


- Kassay Field Services, Mohrsville, PA
- Ram Hashmonay Atmosfir Optics Ltd., Ein Iron, Israel

• Tesoro Carson refinery environmental staff for assisting with measurements inside the refinery tank farm

EXTRA SLIDES

SCAQMD AIR MONITORING NETWORK

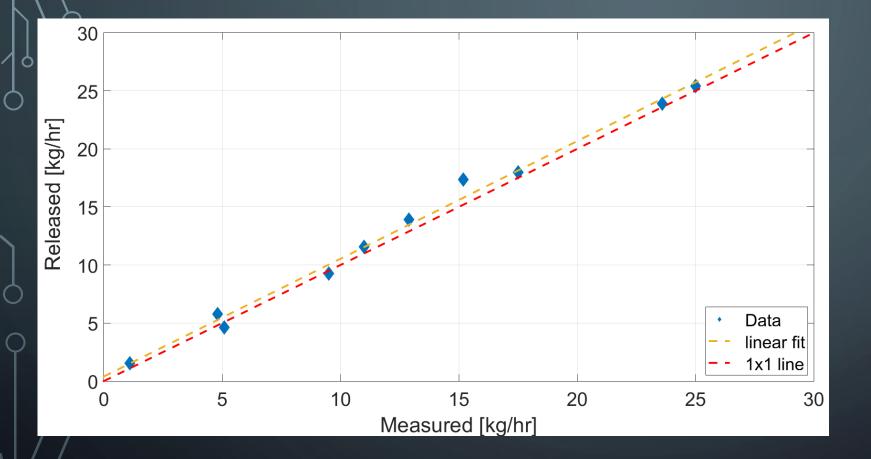


- 38 permanent air monitoring stations
- 4 single-pollutant source impact Pb air monitoring sites
- Temporary sites for special monitoring purposes (e.g. incident response)

Ozone Nitrogen Dioxides PM10, PM2.5 **Carbon Monoxide** Sulfur Dioxide **Particulate Lead**

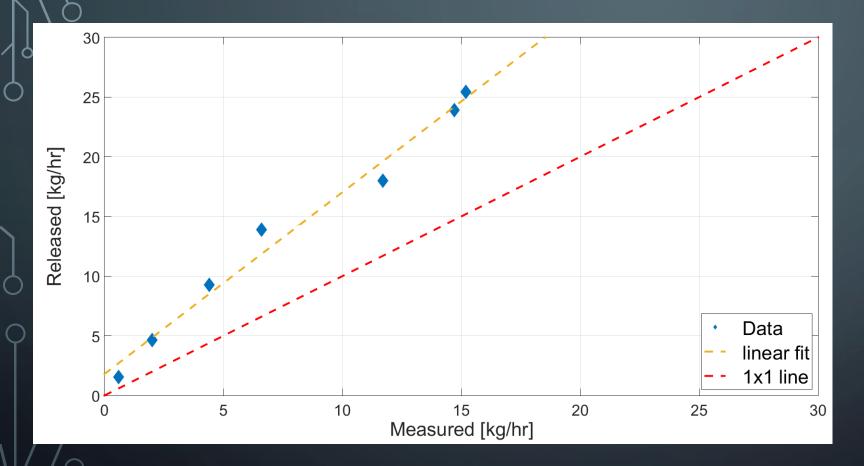
AREA SOURCE EMISSIONS FACILITY (ASF)

- A high flow gas blending system was constructed that allows gas species to be released at controlled traceable rates comparable to small-medium industrial emissions: (1.1 - 55 kg/h for C3H8; 0.7 - 36 kg/h for CH4; and 2 - 99 kg/h for CO2.
- The system is configurable—four release nodes to replicate spatial and temporal characteristics of different emission scenarios.
- The system is housed within a trailer for easy transport.
- Gas dispersion from nodes has been validated using several techniques including DIAL and Optical Gas Imaging (OGI) technology.
- The system has been successfully utilized in a number of campaigns to date, including replicating emission sources from shale gas processing equipment.
- Work is continuing to develop
 - larger diffusive emission nodes
 - nodes to simulate component emissions.



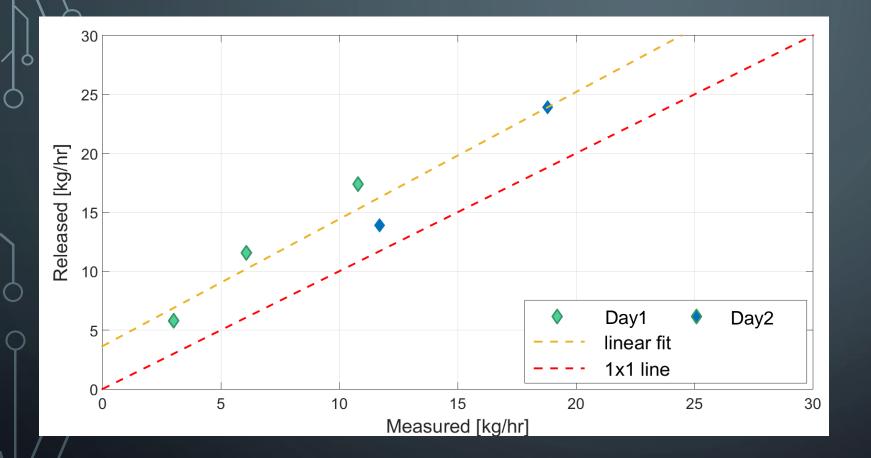
CONTROLLED-RELEASE STUDY: DATA OVERVIEW

Date	Alt. (m)	Release rate [kg/hr]	Fluxsense	NPL	Atmosfir	Kassay	Weather Conditions	
10/12/15	3	5.8	No data due to unfavorable weather	4.8	3	5.3	Cloudy, variable winds (1.5 - 3.5 m/s)	
10/12/15	3	11.6	Same as above	11	6.1	14		
10/12/15	3	17.4	Same as above	15.2	10.8	12.3		
10/13/15	3	13.9	6.6	12.9	11.7	19.6		
10/13/15	6.4	4.6	2.0	5.1	No data - VRPM not applicable	No data - method not applicable		
10/13/15	6.4	18.0	11.7	17.5	Same as above	Same as above		
10/13/15	6.4	1.6	0.6	1.1	Same as above	Same as above	Clear sky, steady wind	
10/13/15	6.4	9.3	4.4	9.5	Same as above	Same as above	(2.5 - 7 m/s)	
10/13/15	7.9	25.4	15.2	25	Same as above	Same as above		
10/13/15	3	23.9	14.7	23.6	18.8	52.5		

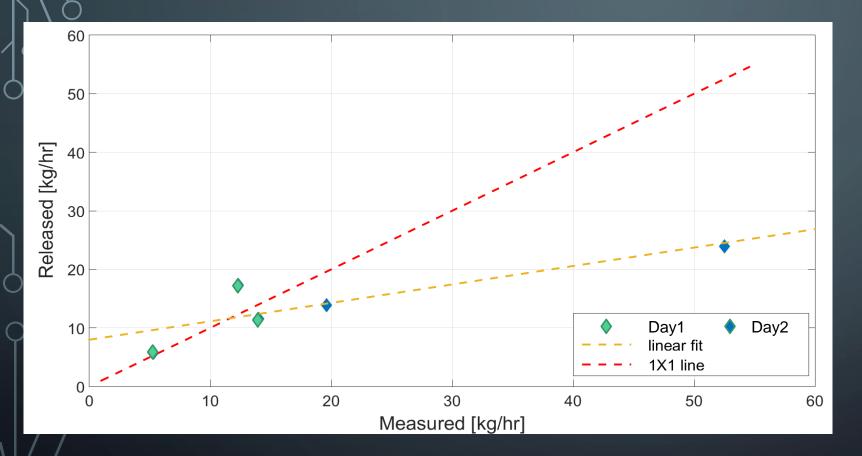

/ 9

CONTROLLED-RELEASE STUDY: RESULTS OF DIAL MEASUREMENTS

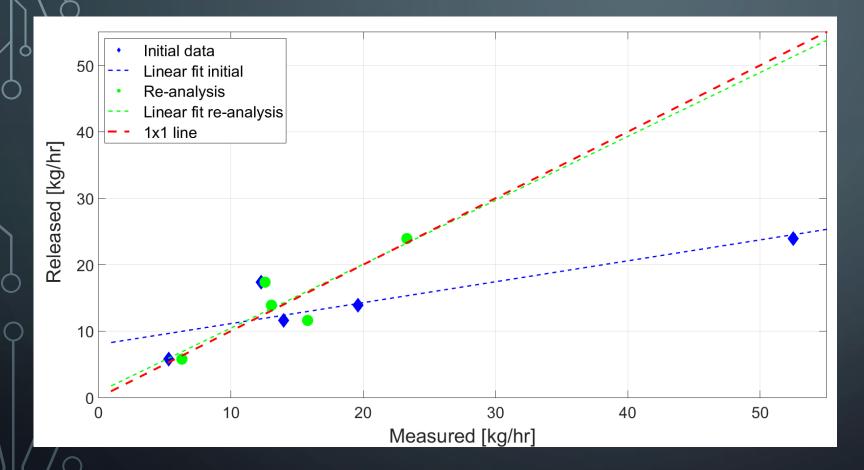
- DIAL method accurately quantified and visualized propane emission plume
- DIAL measurements not affected by meteorological conditions
 - -1.01 + 0.1
- y = 1.01x + 0.4 $R^2 = 0.99$


CONTROLLED-RELEASE STUDY: RESULTS OF SOF MEASUREMENTS

• Excellent linearity and correlation coefficient y = 1.52x + 1.81 $R^2 = 0.98$


- SOF method consistently underestimated emissions by ~40%
- Close proximity to release source caused underestimation

CONTROLLED-RELEASE STUDY: RESULTS OF VRPM MEASUREMENTS


- Quantified releases from 3m altitude only
- Good linearity and correlation coefficient y = 1.08x + 3.64 $R^2 = 0.92$
- Measured fluxes were slightly underestimated
- Better performance during day 2 due to more favorable meteorological conditions

CONTROLLED-RELEASE STUDY: INITIAL RESULTS FOR AREA SOURCE TECHNIQUE

- Quantified releases from 3m altitude only y = 0.315x + 7.98 $R^2 = 0.74$
- First day fluxes ranged between -29.2% and 20.9% of actual release rates
- Day two fluxes were overestimated by factor of two

CONTROLLED-RELEASE STUDY: REANALYSIS FOR AREA SOURCE TECHNIQUE

- Reanalysis of the data by
 - adjusting surface
 roughness parameter
 - Accounting for stable atmospheric conditions on day two
- Significant improvements in calculated fluxes y = 0.962x + 0.824 $R^2 = 0.77$
- Care should be taken in selecting model input parameters