

Development of an Odour Sampling Program

Getting Them Right the First Time

David Hofbauer, M.A.Sc., P.Eng. RWDI

Air & Waste Management Association Odour Workshop October 23, 2012

Outline

- Identification of Sources
- Sampling Programs
 - Where do they fit in
- Identification of Odourous Sources
 - Case Study: Electroplating
- Sampling of Odourous Sources
 - Ontario Source Testing Code, version 3
 - Case Studies: Pre-dilution

- Determine Emission Sources
 - Collected Discharge
 - Stack
 - Exhaust fan (wall, roof ventilator, etc.)
 - Fugitive Discharge
 - Storage piles (waste, compost, etc.)
 - Lagoons
 - Buildings with an air surplus

Odour Management Plan

& SCIENTISTS

Identification of Odourous Sources

- Determine All Potential Odour Sources
 - Source Analysis
 - Chemicals in use (ESDM/MSDS)
 - Public/employee complaints
 - Met conditions and processes paired with complaints
 - Existing odour controls

Case Study: Electroplating

- Electroplating Facility Issues
 - Site
 - Onsite wastewater treatment plant (WWTP)
 - Building air movement (H&V)
 - Open plating baths (dip process)
 - Plating chemicals
 - Roof dominated by point sources
 - Odour complaints

Electroplating: Site I

- Onsite WWTP
 - Anaerobic digestion
 - Aeration
 - Biological treatment
- Building H&V
 - Fugitive release from open baths
 - Direct exhaust of odour

- Plating chemicals
 - Chemical composition
 - Similarity between chemicals
- Point sources
 - Maintain indoor air quality and indirect humidity control

Odour complaints

- Distant residences were cause of complaints
 - Low probability of fugitive releases (Low Risk)
 - High probability that plating chemicals combined with point sources are the cause (High Risk)

Electroplating: Low Risk Sources

& SCIENTISTS

- Onsite WWTP
 - Sanitary sewer discharge
 - Metals recovery only
- Building H&V
 - Over a decade spent to ensure a plant air deficiency
 - Direct exhausts in penthouses only

- Plating chemicals
 - 11 different chemicals used
 - Two have similar chemical composition
 - Over tank sampling of 10 chemicals produced "Reference Odour"
 - Reference Odour multiplied by tank area on site gave Chemical Contributions to Odour

- Point Sources
 - 45 sources identified
 - Nine source were deemed surrogate and sampled to represent all 45 sources*
 - Chemical Contributions to Odour combined with point sources to determine sampling program

- How do you collect odour?
 - Consider source characteristics
 - Type Point vs. Area vs. Fugitive
 - Moisture
 - Odour intensity
 - Temperature
 - Static pressure

- Changes to Odour Sampling in Ontario
 - Included in Version 3 of the Ontario Source Testing Code (OSTC) as Method ON-6
 - Pre-dilution sampling
 - "optimum dilution" vs. "minimum dilution"
 - Undiluted sampling
 - Area source sampling
 - Open bed biofilter sampling

• Pre-dilution

- High Intensity
 - Odour panel will detect on highest dilution
- High Temperature
 - Danger to sample containment
- High Moisture
 - Reactions/scrubbing with water

• Pre-dilution

- Optimum Dilution
 - Four to five samples taken at increasing dilution
 - Analysis performed on all collected samples to determine the statistically optimum dilution; remainder of triplicates analyzed at the optimum only

Pre-dilution: Minimum Dilution

ONSULTING ENGINEERS & SCIENTISTS

• Pre-dilution

- Minimum Dilution
 - Field dilution selected based on
 - Moisture of stack gas (g/m³)

- 100 % relative humidity in ambient air (g/m³)
- Minimum dilution to ensure no moisture forms in the sample container
- Guidance provided in OSTC, v3

Case Study: Pre-dilution I

• Ethanol Plant Thermal Oxidizer (2009)

Optimum Dilution Minimum Dilution

- 36 % reduction in measured odour
- <u>ECA</u> The Company shall ensure that the 10-minute average concentration of odour at the most impacted Sensitive Receptor, resulting from the operation of the Facility, shall not exceed 1 odour unit per cubic metre.

• Food Processing Facility (2008)

- 46 % reduction in measured odour
 - Site was under negotiation of ECA and trying to remove 1 OU/m³ limit from Draft ECA

- Know the Source
- Know the Odour
- Know the Code (OSTC in Ontario)

• Representative data the first time

THANK YOU

David Hofbauer M.A.Sc., P.Eng. <u>david.hofbauer@rwdi.com</u>

RWDI

650 Woodlawn Road West Guelph, ON N1K 1B8 Tel: 519-823-1311 <u>www.rwdi.com</u>

