

AWMA Spring Conference April 10, 2014

ORGANICS MANAGEMENT: ANAEROBIC DIGESTION, AN OVERVIEW

John Tomory, Miller Waste Systems

PRESENTATION CONTENTS

- Evolution of Organics Management
- Basics of Anaerobic Digestion
- Anaerobic Digestion Technologies
- Management of End Products
- Anaerobic Digestion in Ontario
- Environmental Benefits
- Conclusion

EVOLUTION OF ORGANICS DIVERSION

Outdoor Windrow Composting

EVOLUTION OF ORGANICS DIVERSION

In-vessel Composting

EVOLUTION OF ORGANICS DIVERSION

Anaerobic Digestion

FEEDSTOCK CHARACTERISTICS

Feedstock for Windrow Aerobic Composting

ANAEROBIC DIGESTION AT A GLANCE

- Digestion of organic matter in the absence of oxygen.
- Completely enclosed –
 Odour potential
 substantially less than
 aerobic composting.
- Reaction pathways are more complex than those of aerobic composting.

TYPES OF ANAEROBIC DIGESTION

- Thermophilic Digestion:
 - 50-60°C
- Mesophilic Digestion:
 - 30-40°C

ANAEROBIC DIGESTION TECHNOLOGIES

Wet AD (low solids)

ANAEROBIC DIGESTION TECHNOLOGIES

Dry AD (high solids)

ANAEROBIC DIGESTION TECHNOLOGIES

Slurry AD (medium solids) - FITEC

YSTEM

DESIGN CRITERIA/KEYS TO SUCCESS

Understanding feedstock and market conditions

Organics Trend - Ontario Municipality

DESIGN CRITERIA/KEYS TO SUCCESS

- Digester size
- Pre-treatment techniques
- Material selection
- Water addition
- Temperature control
- ✤ pH control
- Micronutrient balance
- Hydrogen sulfide production

MANAGEMENT OF SYSTEM OUTPUTS

- Outputs often greatly influence the economics and viability of a project
- Biogas:
 - 60% CH₄
 - 40% CO₂
- Digestate:
 - Nutrient rich digester effluent

USAGE OF BIOGAS – OPTION 1

- High efficiency (~40%) renewable electricity generation.
- Capture and integration of waste heat into process.

USAGE OF BIOGAS – OPTION 2

- Production of Renewable Natural Gas (RNG).
- After biogas treatment, high purity RNG can be injected into NG grid.
- RNG can be used as fuel for transit, waste collection & municipal vehicles.

DIGESTATE UTILIZATION

- Digestate can be taken directly from the digester and applied to agricultural lands as a organic fertilizer substitute.
- Alternatively, the digestate can be dewatered, extracting the solids for marketing as a compost product and treating the wastewater for discharge.

ANAEROBIC DIGESTION IN ONTARIO

Primarily agricultural systems

Some commercial systems, interest building
Biogas Association

ENVIRONMENTAL AND MUNICIPAL BENEFITS

- Generation of renewable electricity
- Production of a pathogen free, organic, and nutrient rich fertilizer
- Diversion of organics from landfill
- Reduced greenhouse gas emissions

IN SUMMARY

- Anaerobic digestion is the next step for organics management in Ontario
- Understanding the process and the market is so important at the onset
- Choose the right technology and learn from industry leaders
- Ensure the production of a consistent and high quality end product.

QUESTIONS?

Contact Information:

John Tomory 8050 Woodbine Avenue, Markham, ON L3R 2N8 T: 905-475-6345 (ext. 5238) F: 905-475-6396 John.Tomory@millergroup.ca www.millergroup.ca

