

Shunt Truck Noise Impact Evaluation

Matthew Brenner | AWMA Nuisances Conference June 21, 2017

Presentation Outline

- Steady State Noise vs Impulse Noise
- Regulatory Requirements
- Truck Shunting Noise
- "Low Noise" Shunt Truck
- Measurement Campaign
- Results
- Conclusions

Steady State vs Impulse Noise

Common Examples

Steady State Noise

- Motors
- Pumps
- Fans

Impulse Noise

- Jack Hammer
- Dust Collectors
- Pneumatic Tools

GHI

Steady State vs Impulse Noise Sound Type Comparison

Regulatory Requirements NPC-300

 Table B-1

 Exclusion Limit Values of One-Hour Equivalent Sound Level (L_{eq}, dBA)

 Outdoor Points of Reception

Time of Day	Class 1 Area	Class 2 Area	Class 3 Area	Class 4 Area
07:00 - 19:00	50	50	45	55

	Table B-3
Exclusion Limit	Values for Impulsive Sound Level (L _{LM} , dBAI)
	Outdoor Points of Reception

Time of Day	Actual Number of Impulses in Period of One-Hour	Class 1 Area	Class 2 Area	Class 3 Area	Class 4 Area
07:00 - 23:00	9 or more	50	50	45	55
	7 to 8	55	55	50	60
	5 to 6	60	60	55	65
	4	65	65	60	70
	3	70	70	65	75
	2	75	75	70	80
	1	80	80	75	85

Regulatory Requirements

Noise Complaints

• Compliance ≠ No Noise Complaints

Quantitative Assessments

Based on annoyance, nuisance, or likelihood to cause disturbance.

• Tonal Penalty (NPC-104)

"If a sound has a pronounced audible tonal quality such as a whine, screech, buzz, or hum then the observed value shall be increased by 5."

Truck Shunting Noise Process

5th Wheel / Shoe

Kingpin

GHD

Truck Shunting Noise Process

Truck Shunting Noise Additional Details

Drivers are trained to hit the trailer hard to ensure a good connection.

- Significant variation due to:
 - > Drivers
 - > Trailers
 - Site Conditions
 - Connection Angle

"Low Noise" Shunting Truck

Noise Reduction Components

Low Profile 22.5" Tires

Lowers 5th wheel height to 44.2". This will allow the truck to gently reverse under a standard 47" coupler height trailer to avoid impact with the trailer and truck frame.

Extended Rear Beavertail

Reduces rear frame angle so trailer slides up frame to couple with the 5th wheel.

Reprogrammed Transmission Shift Points

Transmission is programmed to shift at lower engine RPM.

• 2 Speed Engine Fan Clutch

When engine is at optimal temperature and fan clutch is off, the noise reduces 10 dB when measured outside of the truck

"Low Noise" Shunting Truck

5th Wheel Comparison

Measurement Campaign

Measurement Positions

Measurement Campaign

Measurement Details

- 1. Measured at a height of 1.5 m
- 2. Minimum 20 impulses measured
- 3. Impulses measured simultaneously at both positions.
- 4. Sound level meters configure for impulse time weighting
- 5. All trailers were empty
- 6. Both trucks used diesel engines

Measurement Campaign

Measurement Variants

- 1. Regular Shunt Truck Operations
- 2. Regular Shunt Truck, Restricted to <15 km/h
- 3. "Low Noise" Shunt Truck, Regular Operations

Results Back Measurement Position

Results Side Measurement Position

GHD

Results Measurement Positions (Coupling Impacts)

Conclusions

- Regular Shunt Truck, Restricted to <15 km/h
 - Lower magnitude of noise impact
 - > Audible "Screech" during connection, more likely to cause noise complaints
 - Harder to enforce
- Position of Trucks
 - Parking at a 90 degree angle to sensitive noise land uses could significantly reduced the noise impacts and potential complaints from regular shunt trucks.
- Low Noise Shunt Truck
 - Substantial noise reduction
 - Position still a factor

Questions?

www.ghd.com