

Best Design Practices for Odour Management for Organics Processing Facilities

A&WMA Waste Conference 2014 Presented by: Derek S. Webb

ORGANICS PROCESSING

- Typically categorized into aerobic and anaerobic
- Aerobic or composting can be in static or aerated piles, high rate in vessel
- Anaerobic Digestion can utilize many different technologies (low solids, high solids)

ORGANICS PROCESSING

- Age and Type of Raw Materials
- 2. Feed Stock
 - Technology

3.

5.

6.

7.

8.

- 4. Compost Aeration Rates
 - Pile Temperatures
 - Building Ventilation Rates
 - Plant Operations
 - pH, moisture

ORGANICS PROCESSING

These processes generate a variety of odiferous compounds:

- Ammonia
- Amines and other Nitrogen-bearing Compounds
- Hydrogen Sulphide
- Organic Sulphides (MM, DMS, DMDS)
- Aldehydes
- Acetic Acid

WHERE DO YOU FIND ODOURS?

- Transport to site
- Reception of material
- Pre-treatment of material
 - bag opening, mechanical separation, mixing/homogenization
- Transportation on-site
- Treatment process releases
 - composting, digestion, drying, etc.
- Fugitive emissions
- Waste material and by-products management
 - Waste water ponds
 - Leachate accumulations
 - Screening and blending

DESIGN CONSIDERATIONS

<u>Containment</u> (negative pressure, collection systems, air curtains, doubledoors, in-vessel systems, operation protocols)

<u>Air Volume</u> <u>Minimization</u> (recycling, containment, invessel systems)

Abatement

(process knowledge, technology selection, design and performance objectives)

REDUCING OFF SITE IMPACTS

Organics facilities do not have to have a negative impact on the surrounding communities:

- Integration of a facility wide odour management plan
- Integration of abatement device with building and process design
- Advanced abatement system designs

ABATEMENT EQUIPMENT SELECTION

Criteria	Activated Carbon	Chemical Scrubber	NTP Ionization	Organic Media Biofilters	Biorem (engineered systems)
Capital Cost	Low	Low	Low	Moderate	Moderate
Operating Cost	High	High	Moderate	Moderate	Low
Maintenance	High	High	Moderate	High	Low
Safety	High	Low	Moderate	High	High
Performance	High	Low	Low	Moderate	High

BIOLOGICAL

Biofilters and Biotrickling Filters are examples of Fixed-Film Reactors

- Bacteria and fungi are immobilized on the surface of a matrix
- Malodorous compounds are utilized as substrate
- Two-stage process: phase transfer and oxidation
- No hazardous byproducts are created

BIOFILTRATION ILLUSTRATION

ADVANCED BIOLOGICAL SYSTEMS

Odour control systems have greatly improved over the last decade

- Multiple stage or hybrid systems
- Engineered medias
- Optimized control and monitoring systems
- Incorporation of modelling (performance/dispersion)

ENGINEERED MEDIAS

- Low energy consumption
- Smaller footprint
- Low background odour
- Consistent, reliable performance
- Greater range of compounds treated
- Longevity (proven to last more than 18 years)

NEGATIVE PRESSURE

- Prevents Fugitive Emissions
- Controlled Process Environment

DOWN FLOW

Moisture Control

Particulates

- Biomass Control
- Troubleshooting

DUAL STAGE

- Specific Contaminant Treatment
- Process Control

INNOVATIVE REACTOR DESIGNS

MODELLING

- Predictability
- Understanding Offsite Impacts

CONTROLS

- Monitoring Process Parameters
- Remote Control
- Notifications

Thank you!

For additional information please contact:

Derek S. Webb dwebb@biorem.biz

1.800.353.2087 | www.biorem.biz