

Werner Richarz

Echologics Engineering

wricharz@echologics.com

OVERVIEW

- Acoustic Characteristics of Wind-Turbines
- Challenges of Outdoor Measurement
- Performance Measurement
- Compliance Measurement
- Un-attended Monitoring
- Data Interpretation
- Concluding Remarks

WIND-TURBINE SOUND

Rotational:

- blade passage+harmonics
- wind-shear
- wake-tower interaction

Broadband:

- boundary layer+trailing edge noise
- ingested atmospheric turbulence

Source image when array is above the WT

Outdoor Measurements cope with

- Weather
 - Wind
 - Rain
 - Snow
 - Temperature
- Wildlife
- Frogs, birds, crickets
- Vegetation

Wind

- Microphones cannot distinguish between pseudo-sound and real sound
- Windscreens provides some protection by suppressing small scale eddies
 - Performance not well documented
- Special hemi-spherical units are favoured
- In-ground systems based on long-lost sonic boom experience

Typical Wind-Screens

Wildlife

- Frogs, birds, crickets sounds are audible over large distances
- Add spurious contributions to single number indicators
- Spectrum analysis and special filters may be used if signals are clearly identifiable and not in the bands where WT sound is observable

Performance Measurements

- Conducted according to prescribed standards
 - ► IEC 61400-11
- Octave and 1/3 Octave band used to determine dBA
- Narrow-band spectra used to determine 'tonality' and adjustments to dBA
- Ideal conditions ← → lowest sound power

Compliance Measurements

- Independent audit to establish sound levels under actual operating conditions
- Measurement procedure not standardized in many jurisdictions
- Ontario regulations are somewhat cumbersome and permit extensive data management that effectively lowers the reported sound levels

Typical Field Kit circa 1980

- Portable SLM+Tape Recorder
- Data Analysis via Spectrum Analyzer+Level Recorder
- Permits source identification
- Fair weather system

Experimental Field Kit circa 2004-6

Modern Portable Sound Analyzers

- Compact
- Moderate power consumption
- Programmable
- On event recording
- Convenience options

Basic Features of a Field Kit

- Single channel commonly used in WT noise assessment
- Extended monitoring requires large capacity power supplies (marine batteries)
- Solar panel charging may extend operating period
- Weatherproofing equipment 'black art'
 - Condensation, extreme hot, cold
- Data retrieval "easy"
 - Memory card
 - Internet, cellular networks
- Internet, cellular networks are attractive options

Portable (?) field kit

Field team takes a break

Measured Spectra

Data Interpretation

- Collected data still needs to be reviewed with care
- File affected by extremes of weather easily identified with weather station
- 'Filtering' according to wind state performed manually or via software. No standards set at this time.
- Despite massive data base, there is usually not enough data in the 'critical' ranges.

Alternative Analysis

Autocorrelations identify periodic patterns

Wish-list

Affordable imaging for source location

RECEIVER Acoustic mirror; sound emitted from a source at one focus is received at the second focus.

Old sat. dish: not user-friendly

Multiple Elements

Not for the 'average' consultant

Two microphones

- Requires a little post-processing
- Robust

Potential application to WT

Fig. 4 Nearfield-farfield correlations; time delay between signal reception by the two observers allows construction of source location hyperbola (---).

Now its' your turn!

Thanks to:

Rob Stevens (HGC)

Tony Gambino (Aercoustics Engineering)

Bruce Robertson (Aercoustics Engineering)

Tim Preager (Aercoustics Engineering)

lan McLean (UTIAS, 1980)

Werner Richarz – wricharz@echologics.com